The final report for Connected Motorcycle Crash Warning Interfaces, submitted by Dr. Miao Song, Dr. Shane McLaughlin, and Dr. Zachary Doerzaph has been released.
Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to date. With the active development of next generation crash warning systems based on connected vehicle technologies, this study explored possible interface designs for motorcycle crash warning systems and evaluated their rider acceptance and effectiveness in a connected vehicle context. Four prototype warning interface displays covering three warning mode alternatives (auditory, visual, and haptic) were designed and developed for motorcycles. They were tested on-road with three connected vehicle safety applications – intersection movement assist, forward collision warning, and lane departure warning – which were selected according to the most impactful crash types identified for motorcycles. It showed that a combination of warning modalities was preferred to a single display by 87.2% of participants and combined auditory and haptic displays showed considerable promise for implementation. Auditory display is easily implemented given the adoption rate of in-helmet auditory systems. Its weakness of presenting directional information in this study may be remedied by using simple speech or with the help of haptic design, which performed well at providing such information and was also found to be attractive to riders. The findings revealed both opportunities and challenges of visual displays for motorcycle crash warning systems. More importantly, differences among riders of three major motorcycle types (cruiser, sport, and touring) in terms of riders’ acceptance of a crash warning interface were revealed. Based on the results, recommendations were provided for an appropriate crash warning interface design for motorcycles and riders in a connected vehicle environment.
Click here to learn more about this project and read the final report.
The final report for Connected Motorcycle Crash Warning Interfaces, submitted by Reginald Viray, Alex Noble, Dr. Zac Doerzaph, and Dr. Shane McLaughlin has been released.
This project characterized the performance of Connected Vehicle Systems (CVS) on motorcycles based on two key components: global positioning and wireless communication systems. Considering that Global Positioning System (GPS) and 5.9 GHz Dedicated Short-Range Communications (DSRC) may be affected by motorcycle rider occlusion, antenna mounting configurations were investigated. In order to assess the performance of these systems, the Virginia Tech Transportation Institute’s (VTTI) Data Acquisition System (DAS) was utilized to record key GPS and DSRC variables from the vehicle’s CVS Vehicle Awareness Device (VAD). In this project, a total of four vehicles were used where one motorcycle had a forward mounted antenna, another motorcycle had a rear mounted antenna, and two automobiles had center-mounted antennas. These instrumented vehicles were then subject to several static and dynamic test scenarios on closed test track and public roadways to characterize performance against each other. Further, these test scenarios took into account motorcycle rider occlusion, relative ranges, and diverse topographical roadway environments.
From the results, both rider occlusion and approach ranges were shown to have an impact on communications performance. In situations where the antenna on the motorcycle had direct line-of-sight with another vehicle’s antenna, a noticeable increase in performance can be seen in comparison to situations where the line of sight is occluded. Further, the forward-mounted antenna configuration provided a wider span of communication ranges in open-sky. In comparison, the rear-mounted antenna configuration experienced a narrower communication range. In terms of position performance, environments where objects occluded the sky, such as deep urban and mountain regions, relatively degraded performance when compared to open sky environments were observed.
Click here to learn more about this project and read the final report.
The final report for Connected Vehicle Enabled Freeway Merge Management – Field Test, submitted by Dr. Brian L. Smith, Dr. Hyungjun Park, and Md Tanveer Hayat, has been released.
Freeway congestion is a major problem of the transportation system, resulting in major economic loss in terms of traffic delays and fuel costs. With connected vehicle (CV) technologies, more proactive traffic management strategies are possible. The Freeway Merge Assistance System (FMAS) can implement innovative ramp management strategies by providing personalized advisories to individual drivers to ensure smoother merging. The benefits anticipated from these strategies will completely depend on the advisory compliance of the drivers; this, in turn, will be influenced by situational as well as individual behavioral factors.
The purpose of this research was to investigate drivers’ responses to this new generation of personalized in-vehicle advisory messages. A field test was conducted with naïve human subjects to collect driver behavior data about different types of advisory messages under different traffic scenarios in a controlled environment. The data gathered from the field test indicated that the compliance rate was higher when a large- or medium-size gap was available for a lane change. The lowest compliance rate was observed for a small-gap scenario. In
addition, it was discovered that more drivers would follow a direct advisory message that advised a lane change rather than an indirect message which was meant to stimulate a lane change through speed control.
Click here to learn more about this project and read the final report.
The mission statement of the Connected Vehicle/Infrastructure University Transportation Center (CVI-UTC) is to conduct research that will advance surface transportation through the application of innovative research and using connected-vehicle and infrastructure technologies to improve safety, state of good repair, economic competitiveness, livable communities, and environmental sustainability.
Dr. Thomas A. Dingus serves as the director for the CVI-UTC, as well as the director of the Virginia Tech Transportation Institute (VTTI) and the National Surface Transportation Safety Center for Excellence (NSTSCE). Prior to joining Virginia Tech, Dr. Dingus was founding director of the National Center for Transportation Technology at the University of Idaho and was an associate director of the Center for Computer-Aided Design at the University of Iowa. Dr. Dingus has more than 220 technical publications and has managed approximately $300 million in research funding to date ($130 million as principal investigator).