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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts 

and the accuracy of the information presented herein. This document is disseminated under 

the sponsorship of the U.S. Department of Transportation’s University Transportation Centers 

Program, in the interest of information exchange. The U.S. Government assumes no liability 

for the contents or use thereof. 

 

Connected Vehicle/Infrastructure UTC 

The mission statement of the Connected Vehicle/Infrastructure University Transportation 

Center (CVI-UTC) is to conduct research that will advance surface transportation through 

the application of innovative research and using connected-vehicle and infrastructure 

technologies to improve safety, state of good repair, economic competitiveness, livable 

communities, and environmental sustainability.  

The goals of the Connected Vehicle/Infrastructure University Transportation Center (CVI-

UTC) are: 

 Increased understanding and awareness of transportation issues 

 Improved body of knowledge 

 Improved processes, techniques and skills in addressing transportation issues 

 Enlarged pool of trained transportation professionals 

 Greater adoption of new technology 
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Abstract 

The goal of the Infrastructure Safety Assessment in a Connected Vehicle (CV) Environment 

project was to develop a method to identify infrastructure safety “hot spots” using CV data. 

Using these basic safety messages to detect hot spots may allow for quicker discovery than 

traditional methods, such as police-reported crashes. The basic safety message may be able to 

detect events that police normally cannot obtain, including unreported crashes and near-crashes.  

The project successfully explored some models and algorithms to detect crashes and near-crashes 

and also designed a methodology to apply to hot spot identification. With the data available, 

conclusive results were not achieved; however, the models showed some potential. Three 

techniques were tested to predict crashes using vehicles’ kinematic data. To predict where a 

crash was occurring, multivariate adaptive regression splines, classification and regression trees, 

and a novel pattern matching approach were all tested. The models were able to identify the 

majority of 13 known crashes with different amounts of false positives. The pattern matching 

approach outperformed a simple acceleration threshold by identifying nearly 70% of crashes in a 

crash-only test set and 74% of near-crashes in a near-crash only test set. On the training set, it 

was able to identify more crashes than the thresholds without increasing the number of false 

positives observed. Based on the work described in this report, the CVI-UTC is fully prepared to 

apply the methodology to data collected on the field test bed. 
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Background 
Transportation agencies devote significant resources to analyzing crash data collected by 

responding police agencies to identify “hot spots”—locations that experience a larger than average 

number of crashes. An example of a hot spots map created based on crash data from Ann Arbor, 

Michigan, is presented in Figure 1. 

 

Figure 1. Map of crashes showing potential hot spots in Ann Arbor, Michigan. 

 

In many cases, upon identification of a hot spot, a field investigation points to a particular feature 

of the infrastructure that contributes to the crashes, which may then be addressed specifically to 

improve safety. This method, detailed by the Highway Safety Manual’s (HSM’s) Roadway Safety 

Management Process shown in Figure 2, has been effectively used for many years [1]. However, 

this method also has significant shortcomings; for example, a large number of crashes must 

accumulate before a hot spot can be identified. In other words, this reactive method requires a 

number of crashes to occur before corrective action can be taken. 
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Figure 2. Roadway Safety Management Process [1]. 

Fortunately, there is a reason that crashes are most often referred to as “accidents.” They are 

infrequent, even at most hot spot locations. Thus, a rather long period of time is required for a 

statistically significant accumulation of crashes to occur. Furthermore, accurate capture of the 

locations of crashes has long been a challenge in the transportation community. Even when a hot 

spot is identified, the exact location of the problem is often difficult to pinpoint. Police reports 

have been notoriously inaccurate in terms of crash location, although this has improved somewhat 

with the use of Global Positioning System (GPS) technology. This imprecision demonstrates a 

need to develop a more proactive way to accurately identify hot spots for those locations that 

require modifications to the transportation infrastructure in order to improve safety.  

  

The premise of this project dictates that, for every actual crash, there also exist numerous “near-

crashes” where drivers take last-second, extreme evasive action (such as swerving or rapid 

deceleration) to avoid a crash. These near-crashes may be as significant as actual crashes in terms 

of indicating potential safety problems, yet the challenge lies in identifying and compiling these 

near-crashes. Near-crashes have never been formally reported by the police or other agencies. 

However, with vehicles in a connected vehicle (CV) environment, basic vehicular operation data 

are available from the vehicle data bus. If significant evasive maneuvers can be extracted from this 

data, along with the corresponding GPS locations, a transportation agency can analyze near-crash 

data for hot spot identification. Using CVs instead of police reports offers the potential for a faster 

and more accurate network screening step (as shown in Figure 2), which, in turn, speeds up the 

entire Roadway Safety Management Process. 

This project analyzed data from past field tests to develop prototype algorithms for hot spot 

identification from vehicular operations data. These algorithms were then demonstrated and tested 

on the Connected Vehicle/Infrastructure University Transportation Center (CVI-UTC) Northern 

Virginia Connected Vehicle test bed to determine if they successfully extracted near-crash 
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maneuvers. The data were then analyzed to determine if hot spots could be identified. Finally, 

these hot spots were examined in terms of traditional crash data to determine if a correlation 

existed, indicating the potential of this approach. 

Objectives 

The following steps were originally proposed for this project: 

1. Literature Review 

2. Selection of Crash/Near-Crash Identification Criteria 

3. Development of Methodology to Apply Criteria to Basic Safety Message (BSM) Data 

4. Application and Validation of Proposed Methodology in the CVI-UTC Northern 

Virginia Connected Vehicle Test Bed 

The literature review revealed that only a limited amount of effort has been applied to defining a 

crash or near-crash in terms of kinematic data elements (acceleration, speed, yaw, etc.). This 

development turned Step 2 into a task involving the development of models to describe crash and 

near-crash events. Additionally, lack of available test bed data in the timespan of this project made 

Step 4 infeasible given the large data needs of this method. As a result, this report considers the 

following aspects of the original methodology: 

1. Literature Review Conclusions 

2. Development of Crash/Near-Crash Identification Algorithms 

3. Suggested Approach and Requirements for Application and Testing of this 

Methodology 

Literature Review 
The literature review focused on background information about near-crashes and kinematic-based 

definitions for crashes. Neither of these two topics has received extensive, dedicated research for 

some obvious reasons. The need to detect crashes using kinematic data is fairly recent since this 

type of data on a large scale was never available to researchers until the 100-Car Naturalistic 

Driving Study (NDS) [2]. Near-crashes have traditionally been extremely difficult to study since 

in the past they were neither reported nor recorded. Thus, they are poorly defined occurrences that 

are subject to the judgments and biases of their analysts. Although crashes are actually relatively 

rare events even in hot spots, researchers have proposed that near-crashes, which occur more 

frequently, can help to identify hot spots. The HSM provides an excellent illustration of the 

continuum of scenarios leading up to a crash (see Figure 3).  
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Figure 3. Risk of crash events [1]. 

While many safety conflicts may occur over the course of a trip, an actual crash is frequently 

avoided, implying that only a small percentage of events with a conflict truly result in a crash. For 

every crash that occurs, multiple near-crashes occur where a driver is able to avoid a crash, 

justifying the belief that hot spots can be detected more quickly if near-crashes are also considered. 

In reality, the roadway is the only contributing factor in only 3% of crashes (e.g., wet pavement, 

polished aggregate, steep downgrade, poorly coordinated signal systems, etc.), but an estimated 

31% of crashes combine a vehicle or human factor with the roadway factor. [1] 

A prevailing issue for the tracking and analysis of near-crashes is there are no specific set of 

charateristics that define a near crash, which has created a difficulty in tracking these events. This 

is because until recently, tracking these events has never been feasible, but a standard, exact 

definition of what events constitute a near-crash needs to be developed. In 2010, an article 

produced by Virginia Tech Transportation Institute (VTTI) researchers defined near-crashes as 

[3]: 

Any circumstance that requires a rapid, evasive maneuver by the participant vehicle, or any 

other vehicle, pedestrian, cyclist, or animal, to avoid a crash. A rapid, evasive maneuver is 

defined as steering, braking, accelerating, or any combination of control inputs that 

approaches the limits of the vehicle capabilities. 
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This definition indicates that, in near-crash situations, one or both drivers took action to avoid a 

crash. This is certainly a reasonable situation to define as a near-crash, yet it does not encompass 

events where drivers failed to take action but did not crash due to chance. Additionally, this study 

did not provide a concrete way to differentiate between a near-crash and a less severe event, nor 

did it account for the subjective nature of a rapid evasive maneuver. 

While this definition is clearly not perfect, it provides a reasonable starting point. Klauer et al. [4] 

acknowledged its subjectivity but took it further by defining a rapid evasive maneuver as steering, 

braking, accelerating, or a combination of control inputs approaching a vehicle’s limit. Both of 

these definitions were created as part of the 100-Car NDS. It is important to note that first, analysts 

reviewed video footage of events that were flagged by kinematic triggers and flagged a set of 

events, then analysts reviewed video footage from the trips around the event flags. Given the lack 

of opportunity for researchers and officials to study near-crashes outside of a specific, small-scale 

test scenario, it is difficult to evaluate the true relationship between crashes and near-crashes. Guo 

et. al. [3] reached the following conclusions about using near-crashes as a surrogate safety measure 

for crashes using the 100-Car NDS: 

 No evidence exists to suggest the causal mechanisms for crashes and near-crashes are 

different. 

 A strong frequency relationship exists between crashes and near-crashes. 

 Using near-crash data will have biased results, but the direction of the bias is consistent. 

 Near-crashes can improve the precision of the estimations. 

New York City’s police department has also made an attempt to gather information on near-

crashes by crowdsourcing crash and near-crash data from witnesses with a project called Crash 

Stories NYC. Witnesses of a crash or near-crash were encouraged to visit a website with an 

interactive map and document their experience by completing a survey of date, location, and a 

first-hand account of the incident. Because this project is crowdsourced, it is highly subjective, 

especially because no training was implemented to ensure consistency. The program had low 

participation rates  [5]. 

The detection of crashes as near-crashes specifically using kinematic vehicle data is a relatively 

new problem, as kinematic vehicle data have not typically been available on a large scale in an 

uncontrolled setting. This has recently begun to change, thus making the detection of safety-critical 

events using kinematic vehicle data a much more relevant topic to pursue, especially with the 

commitment to vehicle-to-vehicle (V2V) technology. Most of the completed work is either 

threshold based or time-to-collision-(TTC) based. While TTC metrics are likely to contribute to 

detecting near-crashes in a fully saturated CV environment, using TTC is not feasible in a test bed 

situation where only a small percentage of the vehicles are equipped with V2V. Still, even those 
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with a TTC input are worth mentioning to include in future work, as a fully saturated CV 

environment is a real possibility in the near future [6]. 

Until now, the primary model to detect a near-crash using kinematic data was through the use of a 

threshold or set of conditions that must be met to flag an event. The 100-Car [1] and Second 

Strategic Highway Research Program (SHRP 2) [7] NDSs conducted by VTTI probably provide 

the best means to study near-crashes. In both of these studies, researchers equipped participant 

vehicles with cameras and data acquisition systems (DASs). These drivers then continued on with 

their daily driving lives while VTTI researchers collected kinematic and video data in order to 

study naturalistic driving behaviors in an uncontrolled setting.  

The advantage of video data is that anything flagged by a model may be visually verified. Most 

studies conducted at VTTI involving crashes or near-crashes used the set of flags shown in Table 

1 to indicate these possible events. Table 2 shows the percentage of valid events that were detected 

by each flag along with the false positive rate of each flag. It is quite apparent that when used 

alone, the error rate is high, although accuracy was not stated for combinations of thresholds being 

crossed (i.e., lateral and longitudinal accelerations both crossed). 

Table 1. VTTI Event Flags Indicating a Crash or Near-crash 

 

   Event Flag 

 

Description 

Lateral 

Acceleration 

Lateral motion equal or greater than 0.7g. 

 

Acceleration or deceleration equal or greater than 0.6g. 

 

Acceleration or deceleration equal or greater than 0.5g coupled with a forward TTC of 4 s or less. 

Longitudinal 

Acceleration 

Acceleration or deceleration between 0.4g and 0.5g coupled with a forward TTC of 4 s, and with a 

corresponding forward range value at the minimum TTC not greater than 100 ft. 

Event Button Activated by the driver pressing a button located by the rearview mirror when an event occurred that 

the driver deemed critical. 

Forward TTC Acceleration or deceleration between 0.4g and 0.5g coupled with a forward TTC of 4 s, and with a 

corresponding forward range value at the minimum TTC not greater than 100 ft. 

Rear TTC Any rear TTC trigger value of 2 s or less that also has a corresponding rear range distance of ≤ 50 ft 

AND any rear TTC trigger value in which the absolute acceleration of the following vehicle is 

greater than 0.3g. 

Yaw Rate Any value greater than or equal to a ±4-degree change in heading (i.e., vehicle must return to the 

same general direction of travel) within a 3-s window of time. 
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Table 2. Detection and Error Rate of Flags 

 
Percent of Valid 

Flagged Events  

Percent of Invalid 

Flagged Events  

Lateral 

Acceleration 
3.5 91.3 

Longitudinal 

Acceleration 
44.7 66.4 

Event Button 8.4 69.9 

Forward TTC 56.4 86.4 

Rear TTC 4.6 59.9 

Yaw Rate 21.7 91.1 

 

The majority of studies involving crashes or near-crashes discussed their criteria for detection 

using kinematic data. Since many of these studies were conducted by VTTI, the above thresholds 

were either the first filter or the primary filter used to find events. An additional look at some 100-

Car data found range rate (radar) to be a good predictor of crashes and near-crashes, but the error 

rate was still relatively high. The relative error for each boundary model (shown Figure 4) 

increased as the detection rate went up. The model with minimum error identified 10 out of 11 

crash events, had a false alarm rate of 20%, and a valid hit rate of 74% for crashes and near-crashes 

[2]. Range rate and TTC are very similar and can be a great metric for collisions with lead vehicles; 

however, the method is still prone to error since the radar does not always target the correct 

location. This problem was acknowledged in another VTTI report that estimated range rate based 

on video data and the width of the lead vehicle [8]. 

 

Figure 4. Range rate model boundaries. [2] 
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Another study from the SHRP 2 NDS [9] used the same verbal definition of a near-crash but 

filtered candidate events by a braking force of 0.5g or a steering input that resulted in a lateral 

acceleration of 0.4g. This study admitted that upon completion of the filtering process, it was up 

to the analyst’s subjective judgment to define the candidate event as a near-crash or a less severe 

crash-relevant event.  

A series of studies by Wu and Jovanis [10, 11] suggested a method to use naturalistic driving to 

detect surrogate events (defined as crashes or near-crashes in this report), through a series of 

screenings (Figure 5). This study used data posted in VTTI’s online data warehouse, which will 

be further discussed in the Method section. The first screening was a simple threshold optimized 

to the sensitivity and specificity of the lateral accelerations (Figure 6) that resulted in a set of 

candidate surrogate events for classification before a second screening. For classification, the goal 

was to separate events by the structure of the crash’s lateral acceleration progression. In this case, 

a Chow test was conducted to test for a structural difference between intersection and non-

intersection crashes. After this, a second screening was performed, after which a model was 

developed indicating if an event could (or could not) be used as a surrogate for crashes [10]. A 

conversion factor could then be calculated using conditional probabilities to essentially get the 

value of the surrogate in terms of a crash (i.e., one surrogate event is worth 0.13 crashes) [11]. 

 

 

Figure 5. Surrogate detection model. [10] 
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Figure 6. Sensitivity analysis of thresholds for conflict detection [10]. 

Another report by Talebpour et al. [12] used the NGSim data set and proposed two methods for 

detecting near-crashes, both of which used TTC metrics. The NGSim data set contains vehicle 

trajectory data at two locations collected via video data reduction [13]. The recommended method 

by Talebpour et al. is shown in Figure 7. This approach calculated a normal distribution for each 

driver’s longitudinal acceleration and flagged any event when the acceleration’s probability of 

occurrence was less than the predefined value. Then, the situation was examined for hard braking 

due to a conflict with a lead vehicle or hard braking by a following vehicle. The approach seems 

reasonable; yet their recommendation to use this method was based on results that seemed most 

realistic to the authors, which is subjective. It illustrates the importance of individual driver 

preferences in detection of near-crashes using acceleration and TTC information [12]. 
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Figure 7. Method 1 as recommended by Talebpour et al. [12]. 

Another research study considering NDS data to study risky driving in teens used a simple 

threshold trigger that was lower than the other NDS studies listed; this is because the data were 

used to detect “risky driving” and not near-crashes [14]. Smith et al. also examined accelerations 

in crash-imminent scenarios to quantify different situations for collision avoidance systems [15]. 

Lastly, an alternative approach was taken by Gordon et al. Measurements of known run-off-the-

road hot spots in northern Virginia were taken and NDS data were examined for differences in 

speed entering and exiting the segments, as well as for yaw rates at different points. This report 

showed the viability of performing this type of analysis to learn more about vehicle trajectories at 

hot spot locations [16]. 

Based on the findings of the literature review, a method for detecting crashes and near-crashes was 

designed using components in the BSM. Due to the low market penetration of V2V technology in 

the test bed setting, TTC was not considered for the preliminary algorithms. Instead, various 

modeling techniques were explored to predict if a BSM reading occurred during a crash. 

Method 
Some of the techniques for detecting crashes and near-crashes in a CV environment that have 

already been discussed are actually difficult to apply. Many of these algorithms use TTC as a 
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metric for detection, which is not really feasible due to the small percentage of vehicles with V2V 

technology. The TTC metric is likely to provide insight, but the goal is to have a method that is 

feasible with a relatively small number of V2V vehicles. Additionally, some of these flags were 

developed with the knowledge that video data were available to check the results; this may have 

influenced the designers to choose slightly more liberal criteria for flagging events. 

Thus, the objective of this research was to develop a model that does not use TTC and that has a 

minimal error rate to detect crashes using BSM elements. In the following sections, the data 

sources used in building the models will be described, followed by the methods used for modeling 

crash and near-crash events. 

Data 

All of the data were acquired from the NDS conducted by VTTI. Developing the models based on 

NDS data is beneficial because it provides video capture of the events that occurred, while still 

containing the key kinematic elements that are present in the BSM. Unfortunately, due to limited 

data availability, the training and test data sets were not derived from the same unified data set. 

The training data set consisted of 14 crashes that occurred during the 100-Car NDS. Three data 

files were associated with each crash: trip log, front video, and rear video. Descriptions of each 

are followed by visual representations in Figure 9, Figure 10, and Figure 11, respectively: 

 Trip Log – This table contained various dynamic, geographic, and time-related data, which 

were collected from each vehicle’s DAS at a frequency of 10 Hz. Data elements collected 

included speed, three-direction acceleration, and yaw rate. Figure 8 shows a time series of 

longitudinal accelerations for two of these events. 

 

 Front Video – This video showed the driver’s view through the front windshield. A 

timestamp appeared in the bottom left corner of each video for reference to provide a 

connection between events or actions observed in the video and the corresponding data in 

the trip log. Figure 9 shows a screenshot from one of the front video files. 

 

 Rear Video – This video showed the view of the trip through the back windshield of the 

vehicle. Rear video footage was black and white and lacked a timestamp; whenever 

anything of interest was captured in this video, the corresponding time in the front video 

would need to be examined to extract the timestamp. Figure 10 shows a screenshot from 

one of the rear video files. 
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Figure 8. Two time series of longitudinal accelerations culminating in crashes. 
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Figure 9. Front video NDS data.  

 

 
Figure 10. Rear video NDS data. 

The trips varied in crash type, time of day, length of trip, and outdoor conditions. Researchers 

removed the trip origins in an effort to make the personally identifying information unavailable to 

analysts. Since all of the trips culminated in a crash, the removal of destinations was not necessary. 

The shortest video received was 22 seconds long (the next shortest was over 3 minutes), while the 

longest video was 35 minutes. The distribution of trip lengths, in 5-minute increments, is shown 

in Figure 11. The average trip length was 10.4 minutes. 
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Figure 11. Trip length summary. 

After a closer review of the trip logs, one crash had to be removed due to a block of missing data 

at the time of the crash. This left researchers with 13 usable crashes. The video files were also 

examined to understand information about the exterior conditions and crash types. Table 3 shows 

the distribution of crash type, lighting, and weather for the 13 remaining crashes. In all cases of 

precipitation, the type of precipitation was rain; also, one of the nighttime crashes experienced 

precipitation as well. 

Table 3. Crash Type Distribution (Left); Crash Conditions (Right) 

 

Crash Type Count 

Rear End 9 

Sideswipe 1 

Lane 

Departure 
1 

Angle 2 

 

Conditions Count 

Day 11 

Night 2 

  

Conditions Count 

Clear 11 

Precipitation 2 

Once the video data were reviewed, the point of the crash and the points spanning the entirety of 

the crash event were labeled in the trip logs. This was done manually, using personal judgment, 

by taking the timestamp at the point of collision and the timestamp when the vehicle came to a 

stop and filling in a crash indicator at all the points between them.  
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Due to the small number of crashes available in the training set, it did not make much sense to set 

aside data for testing from the original data set; as a result, two additional data sets, both originating 

from the NDS, were used for testing. The first set for testing was a set of another 14 trips with no 

crashes or near-crashes. These trips contained significantly more driving time, amounting to 

roughly 10 hours combined across the 14 trips. This set of data was used to test the false positive 

rate (false alarms per hour) for the models developed from the first trip. Since no video data were 

available, it was not possible to verify that a near-crash did not occur if the model flagged an event. 

However, since VTTI said that no crashes or near-crashes occurred when the data were acquired, 

the assumption that any detection is a false positive seems reasonable, at least for exploratory 

purposes. Figure 12 shows the longitudinal acceleration profile of a trip from this normal driving 

data set. Notice the difference in scales on both axes.  

 

Figure 12. Time series of longitudinal accelerations in the normal driving data set. 

The third set of data contained 68 crash events and 760 near-crash events [17]. This data set 

included 30 seconds of pre-event and 10 seconds of post-event data, amounting to slightly more 

than 40 seconds worth of data per event [18]. This dataset contained fewer attributes than the 

previous full trips acquired from VTTI and had no video; however, due to the short duration of the 

time series, it can be assumed that any point where a crash or near-crash was indicated by a model 

was indeed the point of the crash or near-crash. Additionally, a short account of what occurred 

during each crash and near-crash was recorded in an event narrative file [19]. This data set was 

used to test the sensitivity (false negative rate) of the model. A sample time series of longitudinal 

and lateral accelerations is shown in Figure 13. 
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Figure 13. Longitudinal and lateral accelerations from a crash event. 

Models 

A few different modeling techniques were applied to predict if a data point was part of a crash or 

near-crash event. The first ones were the threshold-based models VTTI uses as its first screening 

method; these results were used as the benchmark for comparison to estimate model performance. 

Others tested included Classification and Regression Trees (CART), Multivariate Adaptive 

Regression Splines (MARS), and a pattern matching algorithm.  

A vehicle’s current acceleration depends on immediate past actions, especially for normal driving 

tasks when actions are deliberate and repeated throughout a trip. Seeing an acceleration drop from 

−0.2g to −0.3g is very different than an acceleration dropping from 0.3g to −0.3g over the same 

time period. In most cases of a crash, there is a large spike in acceleration that oscillates briefly 

around zero while decaying to commonly observed values shortly after the impact. Using pattern 

recognition, these differences can be captured, and employing a reasonable threshold will not 

identify what is occurring at surrounding points. So, if a threshold is exceeded, you wouldn’t know 

how sharp of an increase there was leading up to the event without information on the surrounding 

points. Additionally, the type of crash and the point and direction of collision will impact the 
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pattern of the accelerations. For these reasons, the models required some sort of data aggregation 

and manipulation before construction. A slightly different approach to aggregation was taken in 

each modeling technique. 

Figure 14 shows the longitudinal acceleration (g’s) for a trip that took place primarily on the 

highway. During this trip, the vehicle stopped suddenly on the freeway around time 125 seconds, 

which is represented by the rougher acceleration pattern at that point. The vehicle then rear-ended 

the vehicle it was following at a high speed at time 170 seconds, where it can be seen that the 

acceleration dropped to −3g upon impact.  

 

Figure 14. Sample time series of longitudinal accelerations, rear-end crash at time 170 seconds. 

Figure 15 shows a panel of four other crash events. The y-axis values vary from crash to crash and 

depend on a combination of crash type, type of vehicle involved, and speed at impact. Thus, simply 

implementing the threshold can lead to issues when trying to detect crashes in this and similar data 

sets. These issues can force the analyst into a trade-off between selecting a high threshold and 

missing lower-severity crashes, or selecting a low threshold and having false positives. In the NDS 

setting, false crash readings can be screened by video data, but in other environments without 

corresponding video data, this will not be possible. 
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Figure 15. A sample of acceleration profiles during crashes. 

Pattern Matching Algorithm  

By examining Figure 14 again, we see that certain patterns appear to repeat throughout the trip. 

Based on that observation, it was hypothesized that if one could develop an algorithm to identify 

or filter out the normal driving actions, one would be left with less-common driving activities, 

such as crashes and near-crashes, which do not follow a consistent pattern. 

Researchers inspected video data from three different trips and determined five baseline time series 

to represent five different common driving actions:  

 accelerating from a stop; 

 accelerating to adjust speed;  

 constant speed; 

 braking to adjust speed; and, 

 braking with the intent of stopping.  
 

The selected baselines are shown in Figure 16. Sensitivity analysis was completed with different 

series selected as baselines and with different numbers of baselines. Using too few baselines 

resulted in numerous unidentifiable stretches, while too many baselines led to confusion about 

what type of action happened at a specific point.  
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Figure 16. Selected baselines. 

The Euclidean distance between the baseline and a portion of the time series was calculated for 

every stretch of 12 readings (~1.2 seconds) using a sliding window that performed an exhaustive 

search for each subsequence along the time series. The decision to use 1.2 seconds was a somewhat 

arbitrary one that dictated many of the subsequent decisions. However, that length was chosen 

because it was short enough to capture the majority of drivers’ actions, and not so long that it could 

capture many additional actions over one time series. 

𝑑 =  √∑(𝒃𝒊 − 𝒚𝒊)𝟐 

Where b = baseline vector 

y = test vector 

Each window was matched to a baseline that had the minimum Euclidean distance, provided that 

distance was no larger than d = 0.5. If no baseline was matched with the window, the stretch was 

marked as unidentified, to be reviewed later. The baseline was decided after testing multiple 

candidate baselines. After no apparent difference in the results between different baselines tested, 

the candidate baseline closest to the chosen length of 12 readings was selected. 

Since a sliding window method was used, every individual point was pattern-matched 12 times; 

thus, each point could have been assigned to more than one pattern. In the event of a point being 

classified into multiple actions, the action that had the most assignments was selected. In the event 

that a point did not have at least 6 of the 12 pattern matches relate to a single action, the point was 
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listed as an unidentified action. Six was settled on as a threshold through sensitivity analysis and 

because it ensured that the majority of the pattern-matches indicated the point was a part of the 

action.  

Figure 17 shows a crash, represented by black dots, compared to the baselines from Figure 16. 

Simply through visual inspection, it can be seen that the pattern quickly deviates from all of the 

baselines. Any set of points that had more than eight unidentified readings in a row were examined 

further to see what had occurred at those times. 

  

Figure 17. Crash comparison (black dots) with baseline readings. 

 

Classification and Regression Trees 

The first attempt at modeling the data was conducted by inputting data points collected at a 

frequency of 10 Hz into a model, without any aggregation whatsoever. However, this was highly 

unsuccessful since the longitudinal acceleration values decay quickly to seemingly normal-level 

readings. The next step was to test the point of contact—just the few readings where the crash 

actually started. This was also unsuccessful likely due to a lack of data (usually less than 10 

readings per crash). The next solution was aggregating the data into intervals and calculating some 

descriptive statistics for each interval. Those values were calculated as follows: 

 Maximum longitudinal acceleration 

 Minimum longitudinal acceleration 

 Mean longitudinal acceleration 

 Variance longitudinal acceleration 

 Maximum lateral acceleration (after 

taking absolute value) 

 Mean lateral acceleration 

 Variance lateral acceleration 
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 Maximum z-direction acceleration 

 Minimum z-direction acceleration 

 Median z-direction acceleration 

 Mean speed  

 Maximum speed 

 Minimum speed 

 Median speed minimum  

 Euclidean distance from set vehicle 

maneuver trajectories

 

CART is a recursive technique that chooses the best variable to split the data during each step 

based on a variety of proposed metrics for impurity, generally either using the Gini or Information 

(sometimes “Entropy”) values—both were tested in the modeling process. The result of each phase 

is an exhaustive search and then a split based on the optimal value of the selected metric. The 

benefits of CART include an easily interpreted decision tree and the ability to make decisions for 

data organized in the manner shown in (see Figure 18). Unfortunately, while it provides the optimal 

solution at each phase, the overall optimal solution is not necessarily reached. Additionally, trees 

do not make splits based on variable relationships. 

 

Figure 18. Decision trees excel at separating data organized in this manner. 

Using the “rpart” package in R [20], a few candidate trees were constructed, with different subsets 

of the above variables and both impurity metrics. The best tree was the entropy metric with the 

variables presented in Figure 19. The tree was pruned using the minimum complexity parameter 

value. The two numbers below each branch (N/M) are the predicted 0 and 1 values at each endpoint 

(N = number of predicted 0’s or non-events, M  =number of predicted 1’s or crashes/near-crashes). 

The Receiver Operating Characteristic (ROC) curve is shown Figure 20 and the score table is 

shown in Table 6 for the training data set. The false positive rate is shown in Table 7. Clearly the 
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CART model produces more false positives, but that is likely due to the overlapping nature of the 

windows (i.e., if one point has a minimum longitudinal acceleration and maximum lateral 

acceleration that implies a crash, it will be a part of 12 windows, all of which will be labeled 

crashes). This issue can likely be improved upon by not overlapping the windows, which will be 

tested in the future. 

 
 

Figure 19. Entropy tree. 

Multiple Adaptive Regression Splines 
Using the same aggregated data used in the CART model, a MARS model was constructed. MARS 

is a technique proposed by Freidman [21] in which a piecewise regression function can be built by 

creating hinge functions that can change the trajectory of the model based on the data’s trajectory. 

MARS has the benefit of being able to provide very good fits to the data. The process also outputs 

a way to determine variable importance, at the cost of some interpretability.  

To build the MARS model, the “earth” package from R [22] was used. MARS models predict a 

probability for each data point being true, so a threshold was the probability for calling a window 

a crash. The best one was around 0.8, based on total error as a metric. On the training data, the 

model predicted 9 false positives and 56 false negatives out of a total of 76,960 windows. Two 

hundred forty-eight of the total windows spanned a positive crash reading. 
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Results 
This section will discuss the predictive capacity of each of the three methods on the training data 

and the false positive rate on the test data. The online crash and near-crash event data described 

previously have yet to be tested in the CART and MARS models because some of the data elements 

used in the models were not available in that data set. The NDS thresholds were used as a baseline 

for comparison. 

Pattern matching had very positive preliminary results, identifying 12 out of 13 crashes while 

producing only three false positives. Upon further inspection, the unidentified crash was a low-

speed rear-end collision that did not exceed a deceleration of −0.3g at the point of impact. 

Additionally, the false positives occurred at explainable points upon reviewing the video; the first 

occurred when the vehicle went over a speed bump and the second occurred when the vehicle (this 

particular acceleration series is shown earlier in Figure 8) was forced to stop suddenly on the 

freeway, which could be defined as a safety-critical event and thus should be inspected to see if it 

happened frequently on that segment. The last occurred when a vehicle began accelerating from a 

stop and had to quickly stop to avoid rear-ending the lead vehicle. 

The pattern matching results were then compared to results derived from using two different 

thresholds as event identifiers. The results were favorable for the pattern matching technique. 

Table 4 shows the number of events correctly identified, in addition to the number of false positives 

detected by the pattern matching technique, in addition to thresholds for 0.6g and 0.4g. The 

detection rate results for the online data, shown in Table 5, showed no statistically significant 

difference between the 0.5g threshold and the pattern matching with 95% confidence, with n = 68. 

However, given the benefits of a reduced false positive rate, the pattern matching algorithm may 

still be worthwhile.  

Table 4. Pattern Matching Training Data Detection Rate 

 Pattern Matching Threshold 0.6g Threshold 0.4g 

Detection Rate 12/13 10/13 11/13 

False Positives 3 3 5 

 

Table 5. Pattern Matching Results Online Data Set 

 Crash Near-Crash 

Pattern Match 0.691 0.737 

0.5g Threshold 0.603 0.663 

0.6g Threshold 0.485 0.486 

 

Pattern matching and thresholds did not always detect the same false positives. In general, the false 

positives from the pattern matching technique tended to be either near-crashes or safety-critical 
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events, while this was not the case for thresholds, especially with the lower threshold of 0.4g. An 

additional challenge with using the thresholds was that, since a single value had to be crossed, it 

was sometimes difficult to tell if two violations were related. The pattern matching algorithm was 

developed with a logical way to account for successive indications of crashes.  

For the CART model and the MARS model, the windows created overlap so there were nearly as 

many windows as total readings, which yielded 248 positive readings even though there were only 

13 actual crashes. Table 5 and Table 7 show the detection rate for each algorithm; however, a more 

robust algorithm still needs to be developed with a decision rule about how close two positive 

readings can be in order to be considered the same. 

Table 6 shows the score table for the VTTI NDS thresholds, the benchmark comparison for the 

other models. Table 7 shows the predictions and error rates for the CART model. The recall 

(sensitivity) of the CART model is 199 out of 248 and the precision is 199 out of 221. The ROC 

curve (Figure 20) shows this model very easily detects the majority (~90%) of the windows that 

contain a crash, but getting the additional windows almost linearly increases the false positive rate 

after that. To check for false positive rate, the model was tested on normal driving events; Table 8 

shows that the model did not carry over to the test data as well as the NDS threshold. 

Table 6. NDS Threshold Score Table Results 

VTTI NDS Actual 

Prediction 0 1 

0 76680 120 

1 32 128 

 

Table 7. CART Score Table 

CART Model Actual 

Prediction 0 1 

0 76690 49 

1 22 199 

*Recall = 199/248 = 80.24%, Precision = 199/221 = 90.05% 
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Figure 20. ROC curve for CART tree. 

 

Table 8. CART Test on Normal Driving vs. NDS Triggers 

 Actual = 0 

Prediction CART VTTI NDS Study 

0 368056 369051 

1 1025 30 

 

As shown in Table 9, the MARS model’s performance on the training data improved on both the 

precision and the recall over the CART model and the VTTI thresholds. It also resulted in only 16 

false positives on the normal driving data set, as compared to the 30 false positives from the VTTI 

thresholds.  
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Table 9. MARS Model Results on Training Data 

MARS Model Actual t = 0.8 

Prediction 0 1 

0 76703 56 

1 9 192 

Recall = 192/248 = 87.42%, Precision = 192/201 = 95.52% 

 

Table 10. Results of MARS Model on Normal Driving Compared to NDS Threshold 

 Actual = 0 

Prediction MARS VTTI NDS Study 

0 369065 369051 

1 16 30 
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Conclusions and Recommendations 
Researchers proposed the question of which detection method should be carried out in an 

application setting. In the pattern matching method, sensitivity analysis was used as the 

justification for numerous decisions that were made. A complete sensitivity analysis was 

necessary, but it is important to keep in mind that the algorithm was designed using 13 crashes, so 

finding the optimal values to use in the algorithms was not possible on a general basis. However, 

researchers had to make decisions about what distance metric to use, the number of baselines to 

use and their value, length of windows, and criteria for the classification of unidentified points, 

among a few other things. After the sensitivity analysis was completed, it was discovered that 

many of the choices made at different points of the algorithm had a range of acceptable decisions, 

but were, for the most part, related. For example, the selected length of the window impacted later 

steps in the algorithm, such as the value of the Euclidean distance.  

With pattern matching, only longitudinal acceleration was examined to identify crashes. However, 

it is likely that other data categories collected may be able to improve the capabilities of this 

method jointly, such as lateral acceleration, vertical acceleration, or yaw rate. For example, in the 

case of the vehicle traveling over a speed bump, it is possible that an algorithm for the vertical 

acceleration could potentially detect and prevent the false positive. This was purely demonstrated 

as a proof of concept, and while it appeared promising, the computing cost required to complete 

this algorithm was fairly high without a practical or a statistical significant benefit over a simple 

threshold.  

For the CART and MARS models, the MARS model appeared to perform well with both the 

training and the test data, likely at the cost of easy interpretability. Again, given the limited amount 

of data available, it is difficult to say that the MARS model is definitely a better selection than a 

simple threshold, but based on this preliminary work it certainly has the potential to be an 

improvement. Additional work can be done to look at the best way to segregate the time series 

data to optimize the model results. This includes determining if the time series should be broken 

up into windows, and if so, where the optimal locations for breaking those windows are. 

Additionally, the models could benefit from an algorithm that takes the model results and interprets 

them into events, since an event could span a period of time. Currently, the models classify the 

points, but do not recognize that multiple points in a row are part of a single event. 

Some additional approaches can also be used to predict crashes. Autoregressive Integrated Moving 

Average (ARIMA) models are regression models used on time series data to forecast future values 

while taking into account either the value of the time series at a previous time or the error at a 

previous time. An ARIMA model for each driver could be developed to forecast the value of a 

certain variable (e.g., longitudinal acceleration) for time (t + 1) and calculate a confidence interval 

around the forecast. Then, if the variable’s true value at (t + 1) falls out of the confidence interval 

of the forecast, the event can be flagged. Additionally, the aggregated data used in the MARS and 
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CART models can also be used to develop other types of predictive models, including logistic 

regression, neural networks, and support vector machines.  

The next important step to this research is to design a methodology to detect crashes and use the 

crashes detected in applications. This can be performed on the CVI-UTC Northern Virginia CV 

test bed data once a sufficient volume of data has been collected (i.e., enough “rare” crash and 

safety-critical events have occurred). The current state of the network screening process requires 

at least three years of crash data, making it a highly reactive process that subjects the public to sub-

optimal or dangerous driving conditions until enough crash data accumulate. Using CV BSMs 

provides infrastructure providers with a new type of data that can provide more insight than ever 

into what is actually occurring on the roads.  

By inputting BSM data collected in the test bed into these models, researchers can obtain a list of 

readings that are likely crashes and near-crashes. Then the GPS coordinates for each crash and 

near-crash can be plotted on the network and compared to known hot spots. Known hot spots can 

be determined using traditional methods in order to establish a ground truth. This work will also 

provide more information on near-crashes and their relationship to crashes. Depending on these 

results, this study will have contributed by: 

 Developing a model to use kinematic data to detect crashes and near-crashes; 

 Developing a prototype method to use BSMs to detect hot spots; 

 Providing an avenue for researchers to understand near-crashes; 

 Showing the relationship between crashes and near-crashes. 
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