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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is disseminated 

under the sponsorship of the U.S. Department of Transportation’s University Transportation 

Centers Program, in the interest of information exchange. The U.S. Government assumes 

no liability for the contents or use thereof. 

 

Connected Vehicle/Infrastructure UTC 

The mission statement of the Connected Vehicle/Infrastructure University Transportation 

Center (CVI-UTC) is to conduct research that will advance surface transportation through 

the application of innovative research and using connected-vehicle and infrastructure 

technologies to improve safety, state of good repair, economic competitiveness, livable 

communities, and environmental sustainability.  

The goals of the Connected Vehicle/Infrastructure University Transportation Center (CVI-

UTC) are: 

 Increased understanding and awareness of transportation issues 

 Improved body of knowledge 

 Improved processes, techniques and skills in addressing transportation issues 

 Enlarged pool of trained transportation professionals 

 Greater adoption of new technology 
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Abstract 

Recently, bicycling has drawn more attention as a sustainable and eco-friendly mode of 

transportation. Between 2000 and 2011, bicycle commuting rates in the United States rose by 

80% in large bicycle friendly cities (BFCs), by 32% in non-BFCs, and overall by 47%. On the 

other hand, about 700 cyclists are killed and nearly 50,000 are injured annually in bicycle–motor 

vehicle crashes in recent years in the United States.  

More than 30% of cyclist fatalities in the United States from 2008 to 2012 occurred at 

intersections, and up to 16% of bicycle-related crashes were due to cyclists’ violations at 

intersections. In light of these statistics, this project focused on investigating factors that affect 

cyclist behavior and predicting cyclist violations at intersections. Naturalistic cycling data were 

used to assess the feasibility of developing cyclist violation prediction models. Mixed-effects 

generalized regression model is used to analyze the data and identify the significant factor 

affecting the probability of violations by cyclists. At signalized intersections, right turn, side 

traffic and opposing traffic are statistically significant factors affecting the probability of red 

light violation. At stop-controlled intersections, the presence of other road users, left turn, right 

turn and warm weather are statistically significant factors affecting the probability of violations.  

Violation prediction models were developed for stop-controlled intersections based on kinetic 

data measured as cyclists approached the intersection. Prediction error rates were 0% to 10%, 

depending on how far from the intersection the prediction task was conducted. An error rate of 

6% was obtained when the violating cyclist was at a time-to-intersection of about 2 seconds, 

which is sufficient for most motor vehicle drivers to respond. 
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Background 
Cycling is a growing, eco-friendly mode of travel that will likely attract more participants in the 

future. From 2000 to 2011, bicycle commuting rates in the U.S. increased by 80% in large 

bicycle friendly cities (BFCs), by 32% in non-BFCs, and by a national average of 47% [1]. 

Where BFC is one that welcomes cyclists with trails, bike lanes, share the road campaigns, 

organized rides, Bike to Work Day events, and so much more. A rich matrix of options that 

recognizes an area’s unique resources, the BFC application evaluates how a community 

encourages people to bike for transportation and recreation through the “Five Es”: engineering, 

education, encouragement, enforcement, and evaluation. Due to this growth of cycling, there is 

clearly a need to address bicycling safety. According to a National Highway Traffic Safety 

Administration (NHTSA) report, 742 cyclists were killed and about 48,000 were injured in 

crashes between bicycles and motor vehicles in the United States in 2013 [2]. Bicycle fatalities 

represent 2% of total traffic fatalities, but trips made by bicycles constitute only 1% of all trips. 

Such disproportionate representation of cyclists in the crash and injury statistics merits concern, 

and as cycling grows in popularity, more knowledge regarding the behaviors and factors that 

contribute to this risk is needed.  

Research shows that intersections are critical for cyclists. From 2008 to 2012 in the U.S., on 

average more than 30% of cyclists’ fatalities occurred at intersections [3]. Cyclist violations at 

intersections resulted in up to 16% of bicycle-related crashes [4, 5].  

Many different factors influence cyclist violation behavior at intersections, such as age [6-9], 

gender [6, 7, 9, 10], direction of travel [7, 11], the presence of other road users [6, 7, 11], signal 

timing [8], intersection type [8], helmet use [8, 9], detector failure [7], design characteristics 

[12], and alcohol or drug consumption [9]. Violation rates can also be significantly different for 

different countries (Table 1). 

Table 1. Violation Rates in Different Countries 

Country Violation rate Reference  

Australia 7%-9%  [11] 

China 56% [7] 

Taiwan 21% [8] 

Brazil (self-reported) 38.4% [11] 

 

Because drivers and cyclists may fail to obey traffic rules at both signalized and stop-controlled 

intersections, the problem is how to prevent or mitigate intersection-related crashes that involve 

bicycles. Failures to comply need to be identified before they occur so actions can be taken to 

alleviate the consequences. In this research, naturalistic cycling data were used to assess the 

feasibility of developing cyclist violation prediction models at intersections.  
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The present research continues previous work that proposed a system architecture that 

incorporates naturalistic cycling data for developing cyclist violation prediction models (Figure 

1) [13]. This figure shows system architecture for developing cyclist violation prediction models 

using naturalistic data in a connected vehicle environment. Vehicle to Vehicle (V2V) and 

Vehicle to Infrastructure (V2I) technology has been a highly active area of research. However, 

the focus has been more on passenger cars and thus less attention has been given to bicycles as 

an important transportation mode. Figure 1 illustrates that bicycles instrumented with a bicycle 

data collection system (MiniDAS) were also incorporated into the connected vehicle 

environment. The MiniDAS was used to collect and extract required variables to develop 

violation prediction models (the MiniDAS and model development is discussed later in this 

report). After the violation prediction model is constructed, bicycles and other transportation 

modes would send their sensor data (e.g. speed, acceleration, location) to the infrastructure as 

depicted in Figure 1. In addition, signal phase and timing, known as SPaT would be obtained as 

another input to the prediction model. Violation prediction models for different modes of 

transport should constantly be monitoring individuals approaching the intersection. When a 

potential threat is predicted, different actions can be taken depending on the situation; in 

situations where the endangered driver (or rider) has sufficient time, a warning can be issued and 

sent from roadside equipment (RSE) to the driver (or rider) to respond. In cases where not 

enough time is available, the infrastructure can take appropriate actions by changing the signal 

control setting through the traffic light (e.g. providing all red clearance) as shown in Figure 1.  
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Figure 1. System architecture for intersection bicycle-car crash prediction. 

The remainder of this report is organized as follows. First, a literature review summarizes 

relevant work on bicycle safety at intersections. Second, details are provided on the naturalistic 

cycling study that served as the foundation for model development. Third, models are presented 

that were considered and the results of the modeling. Finally, a discussion of results and 

conclusions are presented. 

Literature Review 
Research into bicycle safety at intersections can be divided into studies that investigated 

contributing factors and those that examined countermeasures. 

Investigating Contributing Factors 

Many studies assessed factors and conditions that influence the crossing behavior of cyclists at 

intersections. These studies are categorized below based on the data collection method 

employed: naturalistic data through intersection cameras, naturalistic data through instrumented 

bicycles, police-reported data, and surveys and interviews. 
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Naturalistic Data Collection through Video Cameras Installed at Intersections 

Video cameras installed at intersections are able to capture how cyclists approach intersections. 

Since cyclists are unaware of the cameras, the behavior of cyclists is considered to be 

naturalistic. However, the results may not be generalizable if the data are only collected at 

limited locations.  

Table 2 lists studies that used intersection cameras to capture the crossing behavior of cyclists. 

Using a single binary logistic regression analysis, Johnson et al. [11] found that the most 

important factor to predict red light runners was the direction of travel, in this case turning left 

(in Australia, traffic travels on the left side, so turning left is equivalent to turning right in the 

United States). By applying logistic regression, Wu, Yao, and Zhang [6] found that the following 

factors increase the probability of running red lights: when the rider was younger, when the rider 

was alone, when there were fewer riders waiting, and when there were other riders already 

violating the red light. Johnson Charlton, and Oxley [10] found gender to be an important factor, 

with males more likely to violate intersection right-of-way rules. Pai and Jou [8] used a mixed 

logit model to examine different factors. Factors that increased the probability of a crash were 

intersections with a short red-light duration, T/Y1 intersections, riders who were pupils in 

uniform, riders on electric bicycles, and riders who did not wear a helmet. 

Table 2. Data Collection through Video Cameras at Intersections – Summary of Past Studies 

Reference  Observations Behavior classification of riders 

Johnson et al. [11] 4,225 6.9% violation rate, no further classification 

Wu, Yao, and Zhang [6] 229  
56% violation rate  

Risk-takinga (28%); law-obeyingb (49%); opportunisticc (23%) 

Johnson, Charlton, and Oxley 

[10] 
5,420 

3% morning, 11% afternoon violation rates  

Racersd (25%); runnerse (42%); impatientsf (33%)  

Pai and Jou [8] 11,410 
Risk-taking (4.7%); law-obeying (85.8%); opportunistic 

(9.5%) 
b Law-obeying: Cyclists who would stop by obeying the red light. 
a Risk-taking: Cyclists who would ignore the red light and travel through the intersection without stopping (but might slow down). 
c Opportunistic: Cyclists who would first wait at red lights but would not be patient enough to wait until the green light and subsequently 

crossed the intersection as they found gaps between crossing traffic.  
d Racers: Cyclists who encountered an amber light, accelerated, but failed to pass before the light turned to red. 
e Impatients: Cyclists who initially stopped, but then could not wait until the end of the red phase.  
f Runners: Cyclists who rode through the red phase without stopping.  
 

The abovementioned terms were defined by authors of different papers as presented in Table 2. However, there are some similarities as 
follows; Opportunistic and Impatient riders appear to be the same. Also, it appears that the behavior of runners and racers can both be 
considered as risk-taking. 

Naturalistic Data Collection through Instrumented Bicycles 

Some studies instrument bicycles with cameras and/or sensors to collect data for cyclists’ entire 

trips. No special instructions concerning how to ride, when to ride, and where to ride are given to 

the participants. Thus, the data collected not only reflect realistic cyclist behavior, but also lead 

to better generalizations because many different locations are included. A few studies have 

                                                           
1
 T intersections have three legs, usually at a 90-degree angle with one another; Y intersections have three legs, 

usually with one leg at an angle less than 90 degrees, much like the letter “Y”. 
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adopted naturalistic cycling data collection techniques similar to the 100-Car Naturalistic 

Driving Study [17], Integrated Vehicle-Based Safety System (IVBSS) [18], and euroFOT [19]. 

Table 3 summarizes these studies. 

Table 3. Naturalistic Cycling Data Collection – Summary of Past Studies 

Reference  Equipment Participant criteria 

Dozza, Werneke, 

and Fernandez 

[20]; Dozza and 

Fernandez [21] 

2 cameras, Global Positioning 

System (GPS), 3-axis 

accelerometer, 3-axis gyroscope, 3-

axis magnetometer, 2 pressure 

brake sensors, speed sensor 

Age between 25 and 70, rode more than 40 minutes per 

day on weekdays, bicycle was transportation mode used 

for commuting, and participants were asked not to carry 

children on the bicycle during the study 

Johnson et al. [22] Video cameras 

Age over 18, regularly commuted by cycling to and 

from work, rode the majority (70%) of trips on paved 

roads during commutes, could collect 12 hours of data 

over 4 weeks per bicycle 

Gustafsson and 

Archer [23] 
GPS and cameras 

Commuter cyclists rode 17 different major cycle routes. 

Participants were required to ride the major part of their 

trips during morning (07:00–09:00) and afternoon 

(16:00–18:00) peak hours. 

 

To identify critical events such as crashes and near-crashes, Dozza, Werneke, and Fernandez 

[20] and Dozza and Fernandez [21] designed and installed a human-machine interface on the 

handlebar so that the cyclist could record the time of critical events using a push button. By 

analyzing the coherence between video and collected signals, the study showed that naturalistic 

cycling data can capture safety-critical situations in the same way that naturalistic driving data 

can. This would contribute to modeling and quantifying the events leading to a critical situation. 

However, regarding the method applied to capture critical events (i.e. using push buttons), giving 

participants extra tasks beyond riding could impact riding behavior.  

Johnson et al. [22] identified sideswipe as the most frequent event type (40.7%). The majority of 

events occurred at intersections or intersection-related locations2. Motor vehicle drivers were 

determined to be the violators in most of the cases. However, Johnson et al. [22] did not use 

sensors in their data collection system to obtain and analyze kinetic data.  

Gustafsson and Archer [23] defined safety problems as hard-braking, swerving, or accelerating 

to avoid a collision. For these safety problems, factors such as involvement of other road users, 

event location, responsible party, and event frequency were identified. Although it was shown 

that the most unsafe cycle-car conflicts took place at intersections, no violations at intersections 

                                                           

2 at-intersection accident: An at-intersection accident is a traffic accident in which the first harmful event occurs 

within the limits of an intersection; intersection-related accident: An intersection-related accident is a traffic 

accident in which the first harmful event (1) occurs on an approach to or exit from an intersection, and (2) results 

from an activity, behavior, or control related to the movement of traffic units through the intersection. 
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were reported. Also, the participants were given strict instructions to obey traffic rules at 

intersections, which negatively impacts the collection of realistic riding behavior data. 

Police-Reported Data 

Schepers et al. [12] used police-reported data to study two types of bicycle-motorist crashes at 

stop-controlled intersections. Crashes in which the cyclist had the priority were classified as type 

I, and the crashes in which the motorist had the priority were classified as type II. They 

employed negative binomial regression models to study factors such as intersections with two-

way bicycle tracks, well-marked, reddish-colored bicycle crossings, the presence of raised 

bicycle crossings (e.g., speed hump), and other-speed reducing measures. Results from their 

negative binomial regression models showed that more type I crashes were seen at intersections 

with two-way bicycle tracks, and well-marked, reddish-colored bicycle crossings. Also, the 

presence of raised bicycle crossings (e.g. speed hump) and other speed-reducing measures were 

associated with less type I crashes. Further, intersections with bicycle track approaches deflected 

between 2 and 5 meters away from the main road corresponded to less type I crashes. However, 

there were no road factors significantly affecting type II cashes. 

Martínez-Ruiz et al. [9] applied logistic regression and multinomial regression analyses to study 

19,007 collisions between a bicycle and another vehicle using police-reported crash data. 

Younger cyclists (age 10 to 19 years), male gender, alcohol or drug consumption, and non-

helmet use were identified as factors increasing the risk of crashes. 

Surveys and Interviews 

A survey study was carried out by Lacherez et al. [24] to investigate visibility factors that impact 

crashes. One hundred eighty-four cyclists who had been involved in crashes with motor vehicles 

were surveyed. Stop-controlled intersections and signalized intersections were found to be the 

third (~17%) and fourth (~9%) most common crash sites.  

Red light infringement was examined in another survey study [7]. Out of 2,061 cyclists in the 

study, 37.3% reported that they ran against a red light. Participants provided the following 

reasons for their violations: turning left (32%); inductive loop detector failed to detect their bike 

(24.2%); absence of other road users (16.6%); at a pedestrian crossing (10.7%); and “other” 

(16.5%). Based on a multinomial logistic regression analysis, males and younger participants 

were associated with higher violation probability. 

Examining Countermeasures 

A limited number of studies focused on introducing countermeasures to reduce bicycle-related 

crashes at intersections. Phillips et al. [14] examined the impacts of having a cycle path at a 

cycle-road intersection based on the change in the number of yielding and conflict events after 

introducing the path. In their study at a Norwegian road–cycle path intersection, 57 hours of 

video data were taken to examine the effects of a cycle path. Yielding and conflict events were 

assessed 2 months, 4 years, and 10 years following the introduction of the road-cycle path, which 
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resulted in a significant decrease in overall conflict levels after 4 years and further decrease after 

10 years. However, the conflict reduction between 4 and 10 years was small. In other words, car-

bicycle yielding events were increased that led to fewer number of conflict events. Zhang and 

Wu [15] adopted logistic regression and analysis of variance to assess the effects of having 

sunshields for cyclists at two intersections across the city of Hangzhou, China. This was an 

observational study in which two video cameras were used to examine the crossing behavior of 

cyclists; 2,477 riders were captured from the video recordings. Logistic regression and analysis 

of variance were applied to understand how the sunshield as a factor influenced red light running 

behavior. It was found that the red light infringement was reduced when having the sunshield 

both on sunny and cloudy days with the positive effect larger during sunny weather compared to 

cloudy weather. More specifically, the results showed that bicyclists were 1.376 times more 

likely to violate a red light when sunshields were not in place at an intersection than with 

sunshields in place. Räsänen, Koivisto, and Summala [16] conducted a before-after study to 

evaluate the impact of a regulation change on bicycle-related crashes. They found that cyclists’ 

movement direction and their location are significant factors that affect cyclists’ crossing 

behavior. As a result, depending on these characteristics, changes in priority regulations have 

different effects. 

Naturalistic Cycling Experiment 
The present research used naturalistic data collected from instrumented bicycles. In a manner 

similar to naturalistic driving studies performed with motor vehicles (e.g., the “100-Car study” 

[17]), bicycles were instrumented and given to the participants to ride. The participants were 

asked to ride the bicycles as they normally would without being provided any special 

instructions. 

The naturalistic cycling study was conducted in three steps: (1) a prescreening to identify the 

participants who encountered the most intersections on their rides; (2) data collection from the 

instrumented bicycles; and (3) data analysis.  

Prescreening 

Because the objective of the present study was to investigate cyclist violation behavior at 

intersections, potential participants were prescreened to understand their weekly trip patterns by 

bicycle. To identify the cyclists who encountered the most intersections on their rides, a series of 

questions, which are shown in Appendix A, were asked over the phone. Other factors used to 

identify eligible participants included the following:  

 Participants must make most of their trips on paved roads rather than on sidewalks and 

bicycle trails. 

 Participants must commute or travel by bicycle at least three times per week on average 

in the Blacksburg, Christiansburg, and/or Radford, Virginia, areas. 
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 Participants were not allowed to transport children by the instrumented bicycle. 

 Participants must be 18–30 or 45–65 years of age from both genders. 

 

Equipment and Data Collection 

The bicycles were instrumented with the MiniDAS data acquisition system (DAS) developed by 

the Virginia Tech Transportation Institute (VTTI) (Figure 2). The MiniDAS had two cameras 

(one for forward roadway view from bike and the other for rider view) and sensors such as an 

accelerometer, gyroscope, and GPS. A removable battery, which needed to be charged by the 

participants using a battery charger, was placed in the water bottle cage. The bicycles were 

hybrid models (Trek 7.2 FX) available in three sizes: small (15 in.), medium (17.5 in.), and large 

(20 in.). Participants were responsible for making sure the battery was charged and that the 

MiniDAS was turned on while riding.  

Initial analysis of sample data showed that the acceleration data had too much noise (due to 

possible DAS vibration when riding) and was difficult to work with. Therefore, a speed sensor 

was added. The speed sensor measured distance as the wheels rolled, and the speed and 

acceleration data were then derived from the distance data.  

 

 
Figure 2. Naturalistic cycling data collection system. 

Data Reduction 

Hawkeye software, a data visualization tool, was used for data reduction. An “event” was 

defined as crossing an intersection. Multiple variables were extracted for each event. Table 4 lists 

the variables obtained through data reduction for all events. The data set used in the present 

research included data from 20 participants. 

MiniDAS includes: 

 Forward-view camera 

 Rider-view camera 

 Accelerometer 

 Gyroscope 

 GPS 

 Speed sensor  

Removable 

battery 
MiniDAS 



  9 

Table 4. Variables Obtained from Data Reduction 

  Variable  

Time 1 (morning/noon/evening) 

Time 2 (weekend/weekday) 

Road slope (uphill/downhill/flat) 

Movement type (right/through/left) 

Presence of other road users (side/opposing/front/adjacent) 

Weather 1 (warm/cool) 

Weather 2 (cloudy/rainy/clear) 

Yellow onset (signal stage) 

Red onset (signal stage) 

Results 

After conducting data reduction for 20 participants, the naturalized data set was separated into 

two subsets: 251 crossings at signal-controlled intersections and 2,024 crossings at stop-

controlled intersections.  

A mixed-effects generalized regression model was used to figure out the significant factors that 

explain the variation in cyclist behavior at signal-controlled and stop-controlled intersections. A 

mixed-effects generalized regression model was used because the analyzed data set had many 

observations from each participant, which violates the independence assumption of a fixed-effect 

logistic regression.  

The results for signal-controlled intersections and stop-controlled intersections are presented in 

separate sections below. 

Signal-Controlled Intersections 

A total of seven different violation types were identified for signal-controlled intersections, as 

shown in Table 5 and Table 6. Based on traffic rules for cyclists in Virginia as presented on the 

Virginia Department of Transportation (VDOT) website, 

“Bicyclists must obey all traffic signs, signals, lights, and markings. However, under 

certain circumstances bicyclists, motorcycles, and mopeds may proceed through a solid 

red light at an intersection. A driver or rider may proceed through the intersection on a 

steady red light only if the driver or rider complies with all five provisions listed below: 

1. Comes to a full and complete stop at the intersection for two complete cycles of 

the traffic light or for two minutes, whichever is shorter 

2. Exercises due care as provided by law 

3. Otherwise treats the traffic control device as a stop sign 

4. Determines that it is safe to proceed 
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5. Yields the right of way to the driver of any vehicle approaching on such other 

highway from either direction”. 

In almost all observations the study participants did not wait two minutes, and thus were 

considered “violators”. In few cases where the participant waited longer (i.e. close to two 

minutes), the participants were also categorized as “violators”. This categorization of cyclist 

behavior occurred because it was not feasible to observe the video data from each participant to 

ensure that they had complied with all five VDOT traffic rules for cyclists. 

Table 5. Cyclist Violation Types Part 1 

In the following violation types, the traffic light is already red when the cyclist approaches the intersection 

(i.e., the cyclist does not see the yellow and red onsets or the cyclist sees the red onset when he/she is too far 

from the intersection). 

The cyclist goes on the sidewalk to the right side of the 

street and makes a right turn on the sidewalk to avoid 

waiting at the traffic light (13.75%). 

The cyclist goes to the pedestrian crossing and makes a 

left turn to the sidewalk. Subsequently, continues on 

the sidewalk or makes a right turn on the pedestrian 

crossing (5%). 

  

The cyclist goes through the intersection without 

stopping when no other road users with a potential 

conflict are present at the intersection (17.5%). 

The cyclist stops first, but after a while, he/she 

proceeds while the light is still red (6.25%). 
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Table 6. Cyclist Violation Types Part 2 

The remaining violation types occurred as a result of being in the dilemma zone as follows. 

The cyclist makes a right turn without stopping (40%). 

The cyclist intends to turn left, stops, and waits for the 

light to change to green. However, the cyclist is not 

detected by the camera at the intersection and thus the 

light stays red. Consequently, the cyclist violates the 

red light as he/she finds a gap (7.5%). 

  

The cyclist sees the yellow onset and decides to proceed. However, the light turns red before reaching the stop 

bar and the cyclist goes through without stopping (10%).  

 

 

In order to find the significant factors that explain cyclist behavior at signalized intersections, a 

mixed-effects generalized regression model was used. Based on the parameter estimation of the 

fixed effect, right turns and the presence of other users (i.e., to the side and front) were found to 

be significant factors (Table 7). This shows that a cyclist is more likely to violate a red light 

when making right turns. The results also show that the probability of red light violation 

decreases when there is side traffic or opposing traffic. 
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Table 7. Mixed-Effects Generalized Regression Model – Signalized Intersections 

Fixed effect Estimate Std Error 
Wald Chi 

Square 

Prob > Chi 

Square 

Intercept  -0.428588 0.1479789 8.3884173 0.0038* 

Morning peak 0.5919818 4.1069203 0.0207771 0.8854 

Noon peak  -2.123522 3.4130388 0.3871072 0.5338 

Evening peak  -1.71912 3.818989 0.2026356 0.6526 

Weekend  -0.658993 2.6015948 0.0641626 0.8000 

Uphill  -1.682128 2.9916978 0.3161424 0.5739 

Downhill  -4.43822 3.2734462 1.8382609 0.1752 

Right turn 12.040572 2.5549167 22.2096 <.0001* 

Left turn 1.5544359 3.0739644 0.2557101 0.6131 

Warm weather  -0.141255 3.1585401 0.002 0.9643 

Cold weather  -0.386963 2.1783913 0.0315548 0.8590 

Gender  -2.1769 8.0621641 0.0729077 0.7871 

Cloudy  -1.182723 2.6363766 0.201257 0.6537 

Rainy 1.8662414 2.3841726 0.6127174 0.4338 

Snowy  -2.166636 3.3099932 0.4284674 0.5127 

Age 2.2903596 14.589569 0.0246446 0.8753 

Side traffic  -6.887538 2.4547243 7.8726798 0.0050* 

Opposing traffic  -7.787741 2.6207319 8.8303466 0.0030* 

Front traffic  -0.560723 2.4781053 0.0511986 0.8210 

Adjacent traffic  -0.010431 2.6166964 0.0000159 0.9968 

Stop-Controlled Intersections 

Based on the parameter estimation of the fixed effect, the following factors are significant for 

stop-controlled intersections: right turns, left turns, warm weather, and the presence of other 

users (i.e., to side, front, opposing, or adjacent). Table 8 shows the results of the statistical 

analysis for all factors. The time of the day, the day of the week, age, and gender were found to 

be not significant.  
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Table 8. Mixed-Effects Generalized Regression Model – Stop Intersections 

Fixed effect Estimate Std Error 
Wald 

ChiSquare 

Prob > 

ChiSquare 

Intercept  -1.285871 0.066046 379.05473 <.0001* 

Morning peak 4.7119668 4.1252868 1.3046564 0.2534 

Noon peak  -1.713809 3.5965811 0.2270624 0.6337 

Evening peak 0.632353 4.0342465 0.0245694 0.8754 

Weekend  -2.323843 2.4601217 0.8922781 0.3449 

Uphill  -3.700012 2.9009361 1.626784 0.2021 

Downhill  -4.799859 2.7700881 3.002408 0.0831 

Right turn 6.9134651 3.1063536 4.9532446 0.0260* 

Left turn  -5.590305 2.8285343 3.9061433 0.0481* 

Warm weather  -8.712035 4.0593821 4.6059514 0.0319* 

Cold weather  -1.691295 3.3912124 0.2487302 0.6180 

Gender   -6.186167 11.748152 0.2772708 0.5985 

Cloudy 2.518305 2.8853412 0.7617673 0.3828 

Rainy 2.5431327 2.8934541 0.7725113 0.3794 

Snowy 4.3065705 4.3765515 0.9682757 0.3251 

Age 8.8147867 17.665864 0.2489739 0.6178 

Side traffic  -25.54735 2.5191416 102.84577 <.0001* 

Opposing traffic  -6.723773 2.4651386 7.4394945 0.0064* 

Front traffic  -9.873646 2.2828026 18.707615 <.0001* 

Adjacent traffic  -5.465376 2.4721507 4.8875396 0.0271* 

Model Development 
The second objective of this research was to test the feasibility of developing models to predict 

intersection violations by cyclists. Several machine learning algorithms were tested: multivariate 

logistic regression (MLR), random forest (RF), K-nearest neighbors (K-NN), and an artificial 

neural network (ANN). The violation prediction models were behavioral classifiers with binary 

responses (in this case, 1 as violation, 0 as compliance). In addition, differing values of the time 

window (monitoring period) during which the kinematics-related variables were computed were 

tested. 

Multivariate Logistic Regression (MLR) 

MLR is used for predicting a binary response using multiple variables. The logistic regression 

model calculates the probability that an observation belongs to a particular response (Equation 

1). In the case of the present research, an observation is explained with multiple variables 

extracted from the data reduction. The binary response in this case was defined as cyclist 

violation (denoted by 1) versus cyclist compliance (denoted by 0) at intersections. The goal was 

to develop a relationship model to investigate variable impacts on the violation behavior of 

cyclists at intersections. 
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 𝑝(𝑌 = 1|𝑋) =
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛

1 + 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛
 Equation 1 

Where,  

𝑋  (𝑋1, … , 𝑋𝑛)  

𝑋1, … , 𝑋𝑛 𝑛 variables 

𝛽0, … , 𝛽𝑛 Model coefficients 

𝑌 Binary response 

𝑝(𝑌 = 1|𝑋)  Probability that a response is 1 given 𝑋 

Random Forest (RF) 

RF as a supervised machine-learning technique was applied to predict cyclists’ violations. RF 

was introduced by Breiman [25], and is considered to be an ensemble learning approach based 

on the decision-tree method. RF creates a number of decision trees, and the outcome is obtained 

from averaging the results from each tree in the case of regression problems or taking the 

majority votes in the case of classification problems. To grow each tree, data are divided into two 

parts in several steps until a desirable separation between classes (the two classes in the case of 

the present research are violation and compliance) is achieved. Data separation in each step is 

carried out by a recursive binary splitting method in which different criteria can be used to split 

the data. The Gini index, one of the recommended approaches, was employed in this study 

(Equation 2) [26]. 

 𝐺 = ∑ 𝑃𝑘
𝑚(1 − 𝑃𝑘

𝑚)

𝐾

𝑘=1

 Equation 2 

Where,  

𝑃𝑘
𝑚 =

1

𝑁𝑚
∑ 𝐼(𝑦𝑖

𝑚 = 𝑘)

𝑥𝑖
𝑚

 

𝑁𝑚  Number of observations received at node 𝑚 

𝑦𝑖
𝑚 The response value corresponding to the observation 𝑖 at node 𝑚 

𝑥𝑖
𝑚 The feature vector corresponding to the observation 𝑖 at node 𝑚  

𝑘 class 

K-Nearest Neighbors Algorithm (K-NN) 

K-NN is a naive technique that is good for classification [27]. The advantage of K-NN is that it 

does not require training to build the model because the training data represent the model. The 

simplest version of a K-NN model has the training portion of the algorithm simply store the data 

points of the raw training data T = {x1, … , xn} without any processing. To classify an unseen 

instance, xt , the algorithm calculates the distances from xt to all instances in the data set, then it 

finds the K smallest distances (nearest neighbors). Finally, the algorithm assigns xt to the class 

that has the majority of K nearest neighbors. This algorithm has two important parameters, the 
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distance metric and the number K. A typical distance metric d(xt, xi) is the Euclidean distance, 

where the value of K is typically between 5 and 20 and is set up experimentally as, 

𝑑(𝑥𝑡, 𝑥𝑖) = √(𝑥𝑡 − 𝑥𝑖)𝑇(𝑥𝑡 − 𝑥𝑖) Equation 3 

However, when the training data set is very large, the K-NN algorithm has a memory problem. 

There is another version of K-NN called agglomerative nearest neighbor (A-NN) that is used to 

overcome memory problems in K-NN algorithms. During the training phase, the A-NN 

algorithm clusters the training instances that have the same label using any of the well-known 

clustering algorithms and saves the cluster centroids for each class Cj = {cj1, … , cjm}. To classify 

unseen instances, xt, the A-NN algorithm calculates the distances from xt to all instances in 

Cj ∀ j, and then finds the K smallest distances (nearest neighbors). Finally, the algorithm assigns 

xt to the class that has the majority of centroids in K. A-NN was not required because data from 

only 20 bicyclists was used and thus there was no memory problem. 

Artificial Neural Network (ANN) 

In machine learning, ANNs are used to estimate or approximate unknown linear and nonlinear 

functions that depend on a large number of inputs. ANNs can compute values or return labels 

using inputs. 

An ANN consists of several processing units, called neurons, which are arranged in layers. In 

this study, a multi-layered, feed-forward ANN was used, which is commonly used for 

classification analysis. In multi-layered, feed-forward ANNs, the neurons are connected by 

directed connections, which allows information flow from the input layer to output layer. A 

neuron k at layer m receives an input xj from each neuron j at layer m − 1. The neuron adds the 

weighted sum of its inputs to a bias term, then applies the whole thing to a transfer function and 

passes the result to the downstream layer. In general, the ANN requires a definition of the 

number of layers, the number of neurons in each layer, and the neuron’s transfer function. Given 

a training data set, the ANN uses a learning algorithm such as back-propagation to learn the 

weights and biases for each single neuron [28]. 

Monitoring Period 

In a manner similar to the driver violation prediction models developed by Jahangiri, Rakha, and 

Dingus [29], the monitoring periods were defined so that the naturalistic study data could be used 

to develop the prediction models.  

Figure 3 illustrates the variables used to define a monitoring period for modeling violation 

prediction models. The violating bicycle on one approach is going to violate the intersection. As 

a result, the endangered vehicle/bicycle on a conflicting approach is at risk of a right-angle crash. 

The monitoring period, tmon
v , is defined by its start (point a) and end (point b). To exclude 

superfluous information, the start point should not be selected too early. The end point is 
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restricted by 𝑡𝑚𝑖𝑛
𝑣  (from point b to point c), which is the minimum time required for the 

endangered vehicle/bicycle to avoid the possible crash. In other words, 𝑡𝑚𝑖𝑛
𝑣  is equivalent to the 

time required for the endangered driver/rider to react (𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒 , from point x to point y) and 

the time required for the endangered vehicle/bicycle to come to a complete stop  (𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒/𝑏𝑖𝑐𝑦𝑐𝑙𝑒
𝑒 , 

from point y to point z).  

 
 

Figure 3. Variables defining monitoring period. 

Based on a distribution of the human response time as presented by McLaughlin, Hankey, and 

Dingus [30], values from 0.5 to 2.5 seconds were chosen for the driver/rider response time 

(𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒 ), which corresponds to a response time for 5% to 95% of the population. It should 

be noted that the distribution of the human response time is for drivers. However, Landis et al. 

[31] have shown that response times for cyclists are similar to drivers. Values from 1.9 to 3.4 

seconds (in the case of passenger cars) and 1.6 to 2.8 seconds (in the case of bicycles) can be 

considered for the vehicle/bicycle braking time (𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒/𝑏𝑖𝑐𝑦𝑐𝑙𝑒
𝑒 ), which corresponds to vehicles 

approaching at velocities from 25 to 45 mph and bicycles approaching at velocities from 20 to 35 

mph, respectively. In the case of four-way stop signs, the endangered vehicle/bicycle is going to 

stop regardless of what the violating bicycle intends to do (i.e., normal crossing at stop signs). 

Consequently, in this case there is no need to account for the vehicle/bicycle response time and 

𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒/𝑏𝑖𝑐𝑦𝑐𝑙𝑒
𝑒  would be zero. In the case of two-way stop signs, however, the 𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒/𝑏𝑖𝑐𝑦𝑐𝑙𝑒

𝑒  

should also be added. 

Variable Selection 

In addition to the variables extracted during video data reduction, speed and acceleration data for 

the monitoring period were obtained from the MiniDAS. Subsequently, statistical measures (e.g., 

mean, range, max, etc.) were applied to create kinematics-related variables to characterize cyclist 

behavior (i.e., stopping vs. proceeding). 
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Modeling Results 

The effect of varying the end point and the length of the monitoring period on the overall 

accuracy of the predictive model built using RF was studied. Two model parameters needed for 

model development, namely the number of decision trees and the number of variables (or 

factors) considered at each split, were determined to be 20 and all factors, respectively. After 

determining the best monitoring period, several learning algorithms were adopted to build 

different predictive models and overall accuracy, true positives, and false alarms were compared. 

The predictive models at signal-controlled intersections and stop-controlled intersections are 

based on the kinetic information of the cyclists. Statistical measures were applied to the kinetic 

data (e.g., speed and acceleration) to create factors for model development. In addition to speed 

and acceleration variables, time-to-intersection (TTI), distance-to-intersection (DTI), and 

required deceleration parameter (RDP) were used to create more factors. Table 9 presents the list 

of all examined factors. 

Table 9. List of Factors to Develop the RF Model 

Factor 

𝑚𝑒𝑎𝑛(𝑇𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑟𝑎𝑛𝑔𝑒(𝑇𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑠𝑡𝑑(𝑇𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑎𝑥(𝑇𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑖𝑛(𝑇𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑒𝑎𝑛(𝑠𝑝𝑒𝑒𝑑) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑟𝑎𝑛𝑔𝑒(𝑠𝑝𝑒𝑒𝑑) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑠𝑡𝑑(𝑠𝑝𝑒𝑒𝑑) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑎𝑥(𝑠𝑝𝑒𝑒𝑑) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑖𝑛(𝑠𝑝𝑒𝑒𝑑) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑒𝑎𝑛(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑖𝑡𝑜𝑛) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑟𝑎𝑛𝑔𝑒(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑠𝑡𝑑(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑎𝑥(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑖𝑛(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑒𝑎𝑛(𝐷𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑟𝑎𝑛𝑔𝑒(𝐷𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑠𝑡𝑑(𝐷𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑎𝑥(𝐷𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑖𝑛(𝐷𝑇𝐼) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑒𝑎𝑛(𝑅𝐷𝑃) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑟𝑎𝑛𝑔𝑒(𝑅𝐷𝑃) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑠𝑡𝑑(𝑅𝐷𝑃) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑎𝑥(𝑅𝐷𝑃) over the 𝑡𝑚𝑜𝑛
𝑣  

𝑚𝑖𝑛(𝑅𝐷𝑃) over the 𝑡𝑚𝑜𝑛
𝑣  



  18 

Signal-Controlled Intersections 

Recall that the end point of the monitoring period is restricted by the reaction time of the 

endangered driver/rider and the endangered vehicle’s stopping time, the sum of 𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒  and 

𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒/𝑏𝑖𝑐𝑦𝑐𝑙𝑒
𝑒 . Therefore, 𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒/𝑏𝑖𝑐𝑦𝑐𝑙𝑒

𝑒 =
𝑝𝑜𝑠𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

2∗𝑎
, where 𝑎 = 3 m/s2. The other term 

defining the end point of the monitoring period is the driver/rider response ( tdriver/rider
e ), which 

has a range of 0.5 to 2.5 seconds. A sensitivity analysis was conducted to understand how model 

performance changed with different monitoring periods. For the sake of comparison, driver/rider 

response was extended to range from 0.25 to 4 seconds. For each end point, four different start 

points were considered to examine four different monitoring period lengths of 1, 2, 3, and 4 

seconds. Figure 4 illustrates the overall accuracy of RF models with different monitoring 

periods.  

 
Figure 4. RF models for signalized intersections – overall accuracies. 

In order to test the effect of the monitoring period end point and length on the overall accuracy, 

linear regression was used to model overall accuracy as a linear function of these two factors. As 

shown in Table 10, the accuracy decreases as 𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒  increases. In other words, as the end 

point of the monitoring period was moved further from the stop line, the overall accuracy of the 

model got worse. The table also shows that the length of the monitoring period is not a 

significant factor.  



  19 

Table 10. Linear Regression Model – Signalized Intersections 

 Estimate p-value 

Intercept 99.3176 2.58E-100 

PRTa(𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒 ) -0.183 0.043195 

Monitoring length = 2 sec 9.47E-03 0.974016 

Monitoring length = 3 sec -0.226 0.430154 

Monitoring length = 4 sec -0.041 0.886623 
a PRT is perception reaction time and it is the sum of two portions. The first is the time a driver needs to perceive sensory signal and decide 

his or her response. The second portion is the time needed for executing the decided response. 

Stop-Controlled Intersections 

As mentioned in the monitoring period section, there is no need to account for the 

vehicle/bicycle response time in the case of four-way stop-controlled intersections. Therefore, 

only the driver/rider response (tdriver/rider
e ) with a range of 0.5 to 2.5 seconds was a factor in 

determining the monitoring period, which basically dictated the end point of the monitoring 

period. A sensitivity analysis was conducted to understand how model performance changed 

with different monitoring periods. For the sake of comparison, the end point of the monitoring 

period was extended from 2.5 to 4 seconds. For each end point, four different start points were 

considered to examine four different monitoring period lengths of 1, 2, 3, and 4 seconds. Figure 

5 illustrates the overall accuracy of RF models with different monitoring periods. As the end 

point of the monitoring period was moved closer to the intersection, the classification error 

decreased, which shows that cyclists’ behavior can be predicted with higher accuracies as they 

near the intersection. However, the prediction accuracies of almost 100% (e.g., when the end 

point is 0.25 seconds) may not be practical as the time is not sufficient for the endangered 

rider/driver to respond.  

 
Figure 5. RF models for stop controlled intersections – overall accuracies. 
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The sensitivity analysis results (overall accuracies) are used to test the effect of the monitoring 

period end point and length on the overall accuracy. Linear regression was used to model overall 

accuracy as a linear function of these two factors. As shown in Table 11, the accuracy decreases 

as 𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒  increases. In other words, as the end point of the monitoring period gets further 

from the stop line, the overall accuracy of the model gets worse. The table also shows that the 

length of the monitoring period is not a significant factor.  

Table 11. Linear Regression Model – Stop Intersections 

 estimate p-value 

Intercept 100.0055 3.58E-177 

PRT(𝑡𝑑𝑟𝑖𝑣𝑒𝑟/𝑟𝑖𝑑𝑒𝑟
𝑒 ) -0.014 0.002756 

Monitoring length = 2 sec -0.011 0.440016 

Monitoring length = 3 sec -0.012 0.410675 

Monitoring length = 4 sec -0.012 0.409998 

Model Comparison  

Four different prediction models were compared. Recall that tdriver/rider
e  is one factor that was 

used to define the end point of the monitoring period. The results reported in this section set 

tdriver/rider
e  equal to 4 seconds so that the monitoring period ends at least 4 seconds before the 

intersection. Four seconds is enough time for the intersection bicycle-car crash prediction system 

to process sensor data and communicate with bicycles and vehicles at the intersection. The 

learning algorithms vary from the simple K-NN, which does not need training, to the state-of-art 

RF algorithm. Logistic regression is one of the learning algorithms used in this section because it 

does not need any fine-tuning. The overall accuracy (ACC), true positive (TP) rates, and false 

positive (FP) rates for the stop-controlled and signal-controlled intersections are shown in Table 

12 and Table 13. 

 
Table 12. ACC, TP Rate, and FP Rate of Signal-Controlled Intersection Data Set 

 ACC TP FP 

RF 99.09 99.47 3.33 

KNN (k = 7) 89.44 97.33 41.33 

ANN 91.74 97.37 29.83 

Logistic regression 91.28 95.37 33.00 

 
Table 13. ACC, TP Rate, and FP Rate of Stop-Controlled Intersection Data Set 

 ACC TP FP 

RF 99.95 99.94 0.91 

KNN (k = 7) 95.26 99.72 9.43 

ANN 98.28 99.33 10.8 

Logistic regression 99.53 99.83 2.43 
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In this context, the violation is positive. The best prediction model is the one that has the highest 

TP rate, which means it predicts violations with high accuracy. At the same time, this model 

should not distract drivers and cyclists with a high FP rate (false alarm). As shown in the table 

above, the worst prediction model for both data sets was the K-NN. ANN and logistic regression 

gave quite similar results because ANN is considered a type of logistic regression. RF was the 

best because it gave a high TP rate and at the same time kept the FP rate very low. 

Conclusions and Recommendations 
This project investigated cyclist violations at intersections using naturalistic cycling data. 

Different factors that affect cyclist violations at both signalized and stop-controlled intersections 

were examined. Mixed-effects generalized regression was carried out to identify statistically 

significant factors. It was found that a cyclist is more likely to violate a red light when making 

right turns at signalized intersections. In addition, the probability of a red light violation 

decreases when there is side traffic at the intersection or when there is opposing traffic to the 

cyclist. In the case of stop-controlled intersections, it was found that right turn, left turn, and 

warm weather were significant factors. Moreover, the likelihood of a stop sign violation 

increases when no other users are present.  

Violation prediction models were developed for stop-controlled intersections and signal-

controlled intersections using an RF method based on kinetic data. The kinetic data, such as 

speed and acceleration, were obtained through instrumented bicycles as part of a naturalistic 

cycling study. Different monitoring periods to extract kinetic data were considered. Different 

period lengths (from 1 to 4 seconds) were tested. However, the monitoring period length did not 

change a model’s performance significantly. Another factor to define a monitoring period was 

the end point of the period, which is basically the time at which the computing and prediction 

task is started. The closer the end point was to the intersection, the higher the prediction accuracy 

that was achieved significantly. However, the trade-off was that higher accuracies are associated 

with less time for endangered users to react. The RF was compared with three other learning 

algorithms and found that RF was the best, having a high TP rate and at the same time keeping 

the FP rate very low. 

Two limitations of this work include: (1) the data collection was conducted in Virginia and most 

observations were a small, rural town (Blacksburg). To generalize the results, additional data 

from larger, urban environments (e.g. cities) and collected in other states would be beneficial, as 

cyclist behavior may differ in dissimilar environments (e.g. big cities vs small towns), especially 

considering that the topography of Blacksburg includes many hilly roads which may affect 

cyclists’ riding behavior. And (2), since violations are rare events, collecting more data would 

also be useful to obtain violation behavior for different types of violations. Having more 

observations of the same violation type would lead to developing models for that particular 

violation type. Therefore, future direction should focus on collecting more data and in various 

environments for better generalization. This research would allow models to be developed for 
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different violation types to understand circumstances and factors that would lead to those 

violation types. Future research should also seek to improve current models to achieve better 

performance in predicting violations. 
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Appendix A 
 

The Blue Cycle Study-Screening Questionnaire 

 

Eligible:     Yes  No 

 

 

Note to Researcher: 

Initial contact between participants and researchers may take place over the phone. If this is the 

case, read the following Introductory Statement, followed by the questionnaire. Regardless of 

how contact is made, this questionnaire must be administered verbally before a decision is made 

regarding eligibility for this study. Once this questionnaire is completed, remove the page with 

their personal information and shred when no longer needed; keeping separately from the 

screening questions. 

 

Introductory Statement: 

After prospective participant calls or you call them, use the following script to guide you through 

the screening interview. 

 

Hello. My name is _____ and I'm with the Virginia Tech Transportation Institute, here at the 

Smart Rd, in Blacksburg, VA. We are recruiting participants for a bicycle study that will take 

place in the New River Valley area of Virginia.  
 

This project will study how people naturally ride their bicycles. You will be provided with an 

instrumented bicycle owned by VTTI and you will be asked to ride it instead of your own bicycle 

for about 4 weeks. The bicycles used for this project are equipped with cameras and sensors to 

observe the events and experiences that cyclists encounter in real world situations. The cameras 

and sensors are very small and are placed out of the way. The data collected will allow 

researchers to analyze many aspects of bicycle riding. 

 

The experiment is divided into 2 phases; each phase will consist of a 2-week period. You will be 

paid $10 dollars per day of successful data collection plus $30 for study completion ($10 to 

come to VTTI and complete initial paperwork, and $20 to complete a questionnaire at the end of 

the experiment). Successful data collection means that you charged the system’s battery the night 

before you intend to ride and you have the system turned on while you ride. Payments will be 

made by check after completion of each phase. Phase 2 will be a couple of months later after 

phase 1 (next year). It is possible you may not be called back for phase two, if there is 

insufficient data collected during the first 2 weeks of participation. 

 

Does this sound like something you would be interested in doing? 

 
If they indicated that they are not interested: 

Thank you for your time.  
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If they indicated that they are interested: 

I need to go over some screening questions to see if you meet all the eligibility requirements. Any 

information given to us will be kept secure and confidential. If you are not chosen to participate, we will 

delete this information, while we will use the information if you are selected to be in the study. 

 

Questions 
 

1. Do you travel by bicycle in Blacksburg, Christiansburg, or the Radford area? (Criterion 

for participation: subject must ride at least 3 days per week in one or more of these areas) 

  □ Yes  □ No 

 If YES,  

 How many days do you ride per week? _________ (on average) 

 (Type 1-commute to work) Do you ride to work? □ No   □ Yes, how many times per 

week?___ (on average)   

 (Type 2-commute to school) Do you ride to school? □ No   □ Yes, how many times per 

week?___ (on average) 

 (Type 3-other) How many times per week do you ride to places other than work or 

school?___ (on average) 

 

 

2. Are you able to ride a standard bicycle with gears, without assistive devices or special 

equipment?  

 □ Yes  □ No 

 

3. Are you willing to wear your helmet during the experiment? □ Yes  □ No 

 

4. Are you willing to use an instrumented bike instead of your own bike during the course of 

this experiment? (it is a hybrid model (Trek 7.2 FX); we have three different sizes: 1. 

Small (15”) 2. Medium (17.5”)  3. Large (20”)  Please note that except the small bicycles, 

the other two sizes (medium, large) have another place for your water bottle if need be.) 

 □ Yes  □ No 
 

If yes: 

a. Which size(s) would likely suit you? 

□ Small (15”)  □ Medium (17.5”) □ Large (20”) □ None of these (if 

answer none would work, then ineligible) 

b. Are you okay with NOT letting children ride along or any other riders on our bike 

while you are in possession of it? 

  □ Yes  □ No (if answer no, then ineligible) 
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(just to remind you, you will still have your own personal bike for use on occasion if 

necessary) 

Comments:_________________________________________________________________ 

 

5. Are you willing to charge the battery of the instrumented bike every night? (you only need 

to take the battery off the bike and plug it in with a cable that we provide, similar to 

charging a cell phone)  

  □ Yes  □ No 

 

6. Are you willing to use a bicycle lock that we provide to lock the instrumented bicycle 

while not in use?  

  □ Yes  □ No 

 

7. Are you willing to keep the instrumented bicycle inside at night and on days when you 

leave it at home? (Is okay if riding to a destination at night and leave outside for a short 

period of time, as long as it is properly locked; when possible, keep indoors at night while 

at a destination other than home). 

 □ Yes  □ No 

 
8. What is your current age?  ______  

(Criterion for participation: subject must be 18-30 or 45-65)  If disqualified for age, and are 

eligible on Q1 – Q7, ask if they would like to be called if we later change the age criterion. 

“Although you do not fit into our current age categories, may we call you back later if these age 

categories change?” 

 

9. Are you available to participate at any time during the next 6 months? (note: we may not be asking 

participants to ride during the main part of winter – over the holidays, etc.) 

□ Yes  □ No 

 

10. Are you a U.S. Citizen? 

  □ Yes      □ No (If No, ask next question)   

 
If NO, Do you have a green card? 

 □ Yes      □ No (If no, not eligible)   
 

11. Are you willing to provide your social security # should you participate, as required by the 

University?  (if they ask why, explain they will be asked to complete a W-9) 

o Yes 

o No  (If No, then they do not qualify) 
Please note that for tax recording purposes, the fiscal and accounting services office at Virginia Tech 

(also known as the Controller’s Office) requires that all participants provide their social security number 
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to receive payment for participation in our studies. Or if a VT employee they may provide their VT 

employee #. 

 
 

12. Indicate participant’s gender : (Criterion for participation: both are eligible) 

   □ Male  □ Female 

 

13. Do you have normal or corrected to normal hearing and vision? (Criterion for 

participation: subject must have normal, or corrected to normal hearing and vision) 

   □ Yes  □ No 

 

  

 

We need to ask a few questions about your medical history… 

 

14. Do you have a history of any of the following medical conditions? If yes, please explain. 

 

a. Neck or back pain or injury to these areas 

 Yes  

 No __________ 

b. Head injury, stroke, or illness or disease affecting the Brain 

 Yes  

 No __________ 

c. Heart condition 

 Yes  

 No ___________ 

d. Current respiratory disorder or any condition which requires oxygen 

 Yes  

 No ____________ 

e. Epileptic seizures or lapses of consciousness within the past 12 months 

 Yes  

 No ___________ 

f. Chronic migraines or tension headaches (more than 1/month during the past year) 

 Yes  

 No ___________ 

g. Inner ear problems, dizziness, vertigo, or any balance problems (current) 

 Yes  

 No ____________ 

h. Diabetes which requires insulin? 

 Yes  

 No _________ 

i. Have you had major surgery in the past 6 months? 

 Yes  

 No _________ 
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j. Are you taking any substances on a regular basis which could impair your motor skills 

or your ability to drive? 

 Yes  

 No __________ 

 
15. (Females only) Are you currently pregnant? Yes__________     No____________  (if “yes,” 

politely inform the participant: while being pregnant does not disqualify you from participating in 

this study, you are encouraged to talk to your physician about your participation to make sure that 

you both feel it is safe. If you like, we can send you a copy of the consent form to discuss with your 

physician. Will they still be able to participate next year, if pregnant now? Answer any questions) 

 

 

 
Note to Researcher: 

If a response to any of the questions above does not meet its criterion, read the following: 

 
Unfortunately you are not eligible for this particular study. Thank you for your time. Would you like to be 

called for future studies?    If yes, skip to bottom of survey. 

 

If all the questions above met the criteria, then continue to ask the following questions: 

 
(Now I will be asking some questions about your daily trips by bicycle, please indicate if 

your answers are different for your commute to work, commute to school, and other trips). 

Also, please answer the questions based on your two-way trips; for example, if you commute 

to school, and it takes you 10 minutes to go to school and 15 minutes back home, your 

answer to a question asking you about your trip length should be 25 minutes (10+15). 

(Also, if you use other transportation modes (like your car or bus) as part of your trips, please 

consider only the part where you ride by bicycle) 

   Three different trip types are: 

    Type 1 trip: Commute to Work  

    Type 2 trip: Commute to School 

    Type 3 trip: Other Trips by Bicycle 

 

 

16. On average, how long does your trip take in minutes?(sum of all trips above 5 minutes 

could be eligible) (Remind that they should account for the two-way trips) 

 Type 1: ____ minutes  

 Type 2: ____ minutes  

 Type 3: ____ minutes  

 

17. Approximately what percentage of your trip is on paved roads, bicycle trails, and 

sidewalks? (NOT eligible if more than 90% of all trips (i.e. CTW, CTH, and OTB) are 

bicycle trails or on sidewalks, other than that could be eligible) (Remind that they should 

account for the two-way trip) 
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 Type 1: ( a. ___% on paved roads     b. ___% on bicycle trails c. ___% on sidewalks) 

 Type 2: ( a. ___% on paved roads  b. ___% on bicycle trails c. ___% on sidewalks) 

 Type 3: ( a. ___% on paved roads  b. ___% on bicycle trails c. ___% on sidewalks) 

 

 

18. What are the main streets/roads you are riding on?(any answer could be eligible) 

 Type 1: ________________________ 

 Type 2: ________________________ 

 Type 3: ________________________ 

 

19.  Do you encounter intersections in your trips? (must encounter intersections) 

□ Yes      □ No (If YES, ask next question) 

 If yes, how many of them are signalized and how many are stop signs? (eligible if 

encounter 3 or more signalized intersections AND 3 or more stop signs - 6 or more in 

total)(Remind that they should count for the two-way trip) 

 Type 1: signalized:_______________stop signs:__________ 

 Type 2: signalized:_______________stop signs:__________ 

 Type 3: signalized:_______________stop signs:__________ 

 

 

20. Is there a place where you experience a lot of delays throughout your trips? Where (e.g. a 

specific street or intersection)?(any answer could be eligible) 

 Type 1: □ No □ Yes, Location: ___________________ 

 Type 2: □ No □ Yes, Location: ___________________ 

 Type 3: □ No □ Yes, Location: ___________________ 

 

21. What time of day do you ride?(any answer could be eligible) 

 Type 1: ___________________ 

 Type 2: ___________________ 

 Type 3: ___________________ 

 

22. Are there conditions in which you may decide not to ride and use other modes of transport 

(conditions like: being sick, rainy day, snowy day, possibility of rain, specific months like 

in December, etc.)?(any answer could be eligible) 

 Type 1: □ No □ Yes, Conditions: ______________________________ 

 Type 2: □ No □ Yes, Conditions: ______________________________ 

 Type 3: □ No □ Yes, Conditions: ______________________________ 
 

Comments in response to question 22:_____________________________________________ 

 

23. Do you typically carry children on your trips using your bicycle? 

□ Yes      □ No (If Yes, ask next question) 

 

If Yes, How often do you carry children on your trips? 
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 Type 1: ____________ 

 Type 2: ____________  

 Type 3: ____________ 

If Yes. You cannot use this bicycle to transport children while in our study, will that be a 

problem? Ineligible if this is a problem (reminding them, they have access to their own 

bicycle if necessary during participation) 

Comments: 

________________________________________________________________________

________________________________________________________________________ 

 

 
Note to Researcher: 

At this point the questions are finished, please read the following: 

 
Thank you for your time. Depending on the number of people who respond, it is possible not all eligible 

people will be selected to participate in this study. Appointments will be filled until sufficient numbers 

have been enrolled.  

 

 

 

 

 

Criteria For Participation 

 

1. Must commute/travel by bicycle at least 3 times per week on average in the Blacksburg, 

Christiansburg, and/or Radford areas 

2. Must be able to ride a bike with gears without assistive devices or any special equipment 

3. Must wear their own helmet while participating/riding our bike 

4. Must be willing to use an instrumented bicycle that VTTI provides during the experiment 

AND 

A. Agree they will NOT allow children to ride along or any other riders on the VTTI bicycle 

5. Must take the battery off the bike every night and charge it for the next day/ride 

6. Must use the bicycle lock that we provide when not using the bicycle 

7. Must be able to keep the instrumented bicycle inside at night or while not ‘in use’ (out riding 

it) 

8. Subject must be 18-30 or 45-65 years of age 

9. Must be available to participate during the next 6 months (not moving or scheduled to have 

major surgery, or anything that may interfere with them participating in part 2 next year. 

10. Must be a U.S. citizen or hold a green card 

11. Must be willing to complete a W-9 tax form which includes their SSN or VT ID # 

12. Both males and females are eligible (we need the information later) 

13. Must have normal (or corrected to normal) hearing and vision (self-report). 
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14. Health Questions: 

a. Cannot have a history of neck or back conditions which still limit their ability to 

participate in certain activities. 

b. Cannot have a history of brain damage from stroke, tumor, head injury, recent 

concussion, or disease or infection of the brain. 

c. Cannot have a current heart condition which limits their ability to participate in 

certain activities. 

d. Cannot have current respiratory disorders or disorders requiring oxygen. 

e. Cannot have had epileptic seizures or lapses of consciousness within the last 12 

months. 

f. Cannot have chronic migraines or tension headaches (averages no more than one 

per month). 

g. Cannot have current problems with motion sickness, inner ear problems, 

dizziness, vertigo, or balance problems. 

h. Cannot have diabetes which requires insulin 

i. Must not have had any major surgery within the past 6 months. 

j. Cannot currently be taking any substances that may interfere with driving ability 

(cause drowsiness or impair motor abilities). 

15. If pregnant, encourage them to speak with their doctor first. Remind of timeline, that they 

will be called back next year for phase 2 and see if this will be a problem (would they still be 

able to participate a few months from now) 
 

 

------------------------------------------------------------------------------------------------------------------ 
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If not Eligible:  Would you like to be contacted for future studies?   Yes: ______    No: _______ 

 

 

Full Name: ____________________________   Year Of Birth: ___________________ 

Contact Numbers:_______________________________________________________ 

Email:__________________________( 

Specialty License(s)?: ___________________________________________________ 

 

 

If Eligible: 

 

Name: ___________________________        Phone: ________________________________ 

 

E-mail or mailing address: _____________________________________________________ 

 

Availability: ________________________________________________________________ 

 

Scheduled on (date & time):____________________________________________________ 

 

Would you like to be contacted for future studies?   Yes: ______No: ______YOB:_________ 

 

Primary Vehicle: _________________________    Specialty License: ___________________ 
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