

CONNECTED

VEHICLE/INFRASTRUCTURE

UNIVERSITY TRANSPORTATION

CENTER (CVI-UTC)

F
ie

ld
 Im

p
le

m
e

n
ta

tio
n

 F
e

a
s
ib

ility S
tu

d
y o

f C
u

m
u

la
tive

T
ra

ve
l-T

im
e

 R
e

s
p

o
n

s
ive

 In
te

rs
e

c
tio

n
 C

o
n

tro
l A

lg
o

rith
m

u
n

d
e

r C
o

n
n

e
c
te

d
 V

e
h

ic
le

 T
e

c
h

n
o

lo
g

y

 DUNS: 0031370150000 EIN: 54-6001805

 Grant Funding Period: January 2012 – July 2016

Final Research Reports

March 31, 2016

Field Implementation Feasibility Study of

Cumulative Travel-Time Responsive Intersection

Control Algorithm under Connected Vehicle

Technology

Prepared for the Research and Innovative Technology Administration (RITA);

U.S. Department of Transportation (US DOT)

Grant Project Title:

Advanced Operations Focused on Connected Vehicles/Infrastructure (CVI-UTC)

Consortium Members:

Virginia Tech Transportation Institute (VTTI),

University of Virginia (UVA) Center for Transportation Studies,

and Morgan State University (MSU).

Submitted by:

Virginia Tech Transportation Institute

3500 Transportation Research Plaza

Blacksburg, VA 24061

Program Director:

Dr. Thomas Dingus
Program Director, Connected Vehicle/Infrastructure University

Transportation Center

Director, Virginia Tech Transportation Institute

Professor, Department of Biomedical Engineering and

Mechanics at Virginia Tech

tdingus@vtti.vt.edu

(540) 231–1501

Report Authors:
Saerona Choi, Ph.D.
Research Associate

Department of Civil and Environmental Engineering

University of Virginia

sc2gs@virginia.edu

(434) 924-6347

Byungkyu Brian Park, Ph.D.
Associate Professor

Department of Civil and Environmental Engineering

University of Virginia

Joyoung Lee, Ph.D.
Assistant Professor

Department of Civil and Environmental Engineering

New Jersey Institute of Technology

mailto:tdingus@vtti.vt.edu
mailto:sc2gs@virginia.edu

i

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts

and the accuracy of the information presented herein. This document is disseminated under

the sponsorship of the U.S. Department of Transportation’s University Transportation Centers

Program, in the interest of information exchange. The U.S. Government assumes no liability

for the contents or use thereof.

Connected Vehicle/Infrastructure UTC
The mission statement of the Connected Vehicle/Infrastructure University Transportation

Center (CVI-UTC) is to conduct research that will advance surface transportation through

the application of innovative research and using connected-vehicle and infrastructure

technologies to improve safety, state of good repair, economic competitiveness, livable

communities, and environmental sustainability.

The goals of the Connected Vehicle/Infrastructure University Transportation Center (CVI-

UTC) are:

 Increased understanding and awareness of transportation issues

 Improved body of knowledge

 Improved processes, techniques and skills in addressing transportation issues

 Enlarged pool of trained transportation professionals

 Greater adoption of new technology

ii

Abstract

This project utilized the Connected Vehicle (CV) environment, which provides two-way wireless

communications between vehicles and infrastructure, to (1) improve the Cumulative Travel-time

Responsive (CTR) Intersection Control Algorithm under low CV market penetration by utilizing

Bluetooth technology, and (2) assess potential benefits of the CTR algorithm by examining

mobility, energy, and greenhouse emissions measures. The project team developed and evaluated

a hardware-in-the-loop simulation to ensure that the developed CTR algorithm will work with an

existing traffic controller on the Northern Virginia Connected Vehicle Test Bed.

The team enhanced the CTR algorithm and evaluated its impact to verify the feasibility of field

implementation. Two prediction techniques, a standard Kalman filter (SKF) and an adaptive

Kalman filter (AKF), were applied to estimate cumulative travel time for each phase in the CTR

algorithm. In addition, traffic demand, the market penetration rate (MPR), and the types of

available data were also considered in evaluating CTR algorithm performance. The Lee Highway

and Nutley Street intersection on the Northern Virginia Connected Vehicle Test Bed was

selected for a case study and simulated within VISSIM.

The results showed that the CTR algorithm’s performance depends on the MPR, as the

information collected from CVs is a key CTR algorithm-enabling factor. However, this study

found that the MPR could be relaxed (1) when the data were collected from both CV and

infrastructure sensors, and (2) when an AKF was adopted in the CTR algorithm. The minimum

MPRs required to outperform the current actuated traffic signal control were empirically found

for each prediction technique and types of available data—data from both Connected Vehicle

and infrastructure sensors, or Connected Vehicle’s data only. Even without the infrastructure

sensors, the CTR algorithm could be considered for implementation at an intersection with high

traffic demand and a 50% to 60% MPR. As the MPR for this field evaluation was around 14%,

much lower than the minimum 20% required with an AKF incorporated, the project team could

not implement the proposed algorithm. Instead, the team developed an implementation plan that

can be easily adopted by traffic engineers once the MPR reaches 20% or higher.

Acknowledgments

This research was supported by the Connected Vehicles/Infrastructure University Transportation

Center. We express our gratitude for the support given by Virginia Department of Transportation

traffic engineers Mark Hagan, Ling Li, and Nhan Vu.

iii

Table of Contents

Introduction ... 1

Concept of the CTR Algorithm ... 2

Research Objectives .. 4

Methods... 4

Kalman Filter Algorithms ... 5

Study Apparatus .. 7

Bluetooth Technology as a CV Surrogate ... 7

Hardware-in-the-Loop Simulation (HILS) of CTR Algorithm in Traffic Controller 8

Sensor Configuration for Collecting Travel Time Data .. 10

Simulation ... 11

Study Area Calibration .. 11

Model Estimation for Kalman Filter Algorithms in the CTR Algorithm 13

CV and Infra .. 13

CV Only ... 13

Scenarios and MOEs ... 14

Results ... 15

Feasibility of the CTR Algorithm ... 15

Effectiveness of Prediction Technique .. 15

Effectiveness of Data Availability ... 16

MPR at the Study Area .. 17

Conclusion and Recommendations ... 18

Implementation Plan for the CTR Algorithm ... 20

Components ... 20

Reference .. 22

Source Code for Operating the CTR Algorithm ... 24

Setting a Bluetooth Reader .. 24

Collecting Bluetooth MAC Addresses .. 25

Calculating Kalman Filter Matrix ... 28

Operating the CTR Algorithm .. 31

iv

Collecting Vehicles’ MAC Addresses .. 46

Calculating Travel Time.. 52

List of Figures

Figure 1. Concept of the CTR algorithm. ... 3

Figure 2. Details of the CTR algorithm. ... 3

Figure 3. Conceptual illustration of RSSI-based distance measurement for Bluetooth devices and

sensor unit components. .. 8

Figure 4. HILS configuration for CTR algorithm. .. 9

Figure 5. Simulation-based analysis procedure. ... 10

Figure 6. Configuration of devices. .. 11

Figure 7. VISSIM network for study area [33]. .. 12

Figure 8. Total travel time (h): peak hour (left), off-peak hour (right). .. 16

Figure 9. Average speed (mph): peak hour (left), off-peak hour (right)....................................... 16

Figure 10. Delay (s): peak hour (left), off-peak hour (right). ... 17

Figure 11. CO2 (kg/unit): peak hour (left), off-peak hour (right). .. 17

Figure 12. Fuel consumption (kg/unit): peak hour (left), off-peak hour (right). 17

Figure 13. Sensor installation at the study area to investigate the MPR [33]. 18

Figure 14. Implementation plan of the CTR algorithm at an intersection. 20

List of Tables

Table 1. Descriptions of Current Adaptive Traffic Signal Control Systems [3] 1

Table 2. Simulation Results Using Existing Traffic Signal Timing and Traffic Volume 12

Table 3. Regression Model to Estimate Coefficients in Kalman Filter Using Simulated Data 13

Table 4. Analysis Scenarios .. 14

Table 5. Collected Unique MAC Addresses and Computed MPR of the Study Area 18

1

Introduction
According to the January–March 2015 Urban Congestion Report, the average duration of daily

congestion in the United States—the extra time lost due to the difference between congested speed

and free-flow speed—was approximately 5 hours [1]. To deal with congestion in urban areas,

traffic engineers and researchers have developed various adaptive traffic signal control systems.

These systems collect vehicle information in real time to optimize signal timing plans by changing

the length and sequence of the phases to serve current traffic demands. There are a number of

widely used systems (Table 1), including the Split Cycle Offset Optimization Technique

(SCOOT), Sydney Coordinated Adaptive Traffic System (SCATS), Real Time Hierarchical

Optimized Distributed Effective System (RHODES), ACS-Lite, Optimization Policies for

Adaptive Control (OPAC), and InSync [2].

Table 1. Descriptions of Current Adaptive Traffic Signal Control Systems [3]

System
Year and country

developed
Goal Methodologies

SCOOT 1970 UK
Minimizes delay with relative

importance on stop

– Optimizes splits

– Cycle and offsets

– Real‐time optimization of signal timing

SCATS 1970 Australia
Minimizes stops, delay (heavy

traffic), and travel time

– Optimizes splits

– Cycle and offsets

– Selects from a library of stored signal

timing plans

RHODES 1990 USA
Proactively responds to the natural

stochastic behavior of traffic flow

– Mainly for diamond interchange

locations

OPAC 1990 USA
Minimizes delay and stops over a

pre-specified horizon

– The network is divided into

independent sub‐networks

ACS Lite
1990-

2006
USA

Adjusts splits and offsets on a cycle-

by-cycle basis

– Operates with predetermined

coordinated timing plans

– Automatically adjust splits and offsets

accordingly

InSync 2008 USA
Services movement stages to

minimize queues and delays
– Uses queue lengths, volumes and

occupancy to optimize time tunnels

Most adaptive traffic control strategies for urban networks that were developed to deal with traffic

congestion face two big challenges. First, since these systems rely mostly on prediction techniques

based on approaching demand, vehicle arrival patterns, and turning movement rates, any

inaccuracy in the prediction technique undermines the performance of traffic control systems. To

overcome inaccuracies and improve system performance, several researchers have applied

advanced prediction techniques to traffic control algorithms. For real-time travel time prediction

problems, Kalman-filter-based algorithms and time-series models have received great attention

among parametric models, and have been compared with other methods. Several researchers have

employed an advanced Kalman filter to overcome the limitation of the Kalman filter that Gaussian

noise might not be consistent in field data. These approaches include use of an extended Kalman

filter [4]–[6], an adaptive Kalman filter [7], [8], and an unscented Kalman filter [9]. In addition, a

neural network model, which is a nonparametric prediction model, has been used due to its well-

2

known learning and pattern-recognition abilities [10]–[14]. Currently, the k-nearest neighbors

approach is widely used as a non-parametric, short-term prediction method, and it can be easily

extended to handle a multivariate problem using historical data or real-time data [15].

Second, real-time data for adaptive control systems are collected from infrastructure-based

sensors, such as video cameras or loop detectors, that are fixed-point sensors. However, unreliable

prediction of vehicle locations and speeds can lead to suboptimal control. Moreover, travel times

cannot be collected directly until vehicles completely pass the sensors. Hence, travel times need

to be estimated by using an algorithm. Under a vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication environment, referred to collectively as V2X, connected

vehicles (CVs) can send their trajectories to other vehicles and infrastructure through

communication-based devices in real time, and the intersection control algorithm can use directly

measured travel time data.

Recently, many researchers have investigated how to take advantage of communication-based

traffic data to improve operational efficiency and traffic safety. Several methodologies and

algorithms have been proposed to allow vehicles to cross safely at an intersection under a V2X

communication environment. Such algorithms were developed to coordinate individual vehicles’

maneuvers using predicted trajectories or calculated crash potential so that vehicles can safely

cross the intersection [16], [17] Guler et al. [18] proposed an algorithm that incorporates

information from CVs to determine the sequence of departures from an intersection, and developed

an algorithm to evaluate the impacts of autonomous vehicle control and detailed vehicle

information. Dujardin et al. [19] proposed a multi-objective optimization interactive procedure

that considers total waiting time and the number of stops based on an adaptive optimization system.

Feng et al. [20] proposed an algorithm to optimize the phase sequence and duration by solving a

two-level optimization problem: minimization of total vehicle delay and minimization of queue

length under a V2X environment. Their traffic control algorithms using communication-based data

worked well compared with current adaptive signal control systems when a 100% market

penetration rate (MPR) was assumed, but the performance significantly dropped as MPR

decreased.

Concept of the CTR Algorithm

The Cumulative Travel-time Responsive (CTR) algorithm is a real-time intersection control

strategy. As shown in Figure 1, the CTR algorithm determines the optimal green split for the next

time interval by identifying the maximum cumulative travel time (CTT) measured by both CV and

infrastructure-based sensors under a V2X communication environment. CTT is defined as the sum

of the elapsed time spent by individual vehicles for each phase at an intersection. Employed as a

real-time measurement for the CTR algorithm, CTT enables the capture of instantaneous delays

caused by queues and waiting time at an intersection. Given this information, the CTR algorithm

can respond rapidly to a congested traffic condition to reduce the delay and total travel time of the

intersection.

3

Figure 1. Concept of the CTR algorithm.

Figure 2 depicts the CTR algorithm. The travel time data of individual vehicles equipped with a

communications device is collected to implement the CTR algorithm. Subsequently, the CTT for

each phase is calculated. The phase with the longest CTT is compared with the current green time

phase and the CTR algorithm determines whether the current timing for the green phase should be

kept or not.

Figure 2. Details of the CTR algorithm.

4

Research Objectives

The objectives of this research were as follows:

1. To analyze the effectiveness of a CTR algorithm by incorporating MPRs, traffic demand,

and types of available data (i.e., data from both CV and infrastructure sensors vs. CV data

only).

2. To verify the feasibility of field implementation in the near future considering an adaptive

Kalman filter (AKF) algorithm to improve prediction performance under variable MPRs.

3. To evaluate the CTR algorithm using a calibrated VISSIM simulation environment

compared with a current traffic signal control algorithm based on infrastructure sensors by

considering MPRs in terms of mobility and environmental sustainability.

Methods
Taking into consideration a variety of MPRs, this research took the following steps to evaluate the

performance of the CTR algorithm in comparison with the current traffic signal control system.

1. Various Kalman filter algorithms were evaluated and selected.

2. An aparatus was designed for potential field implementation and simulation consideration.

3. A study area was selected and a simulation environment was established using VISSIM

[21], a microscopic simulation package.

4. Field data (i.e., traffic volume, signal timing plans) were collected during both peak and

off-peak hours for VISSIM model calibrations.

5. In the simulation environment, real-time CTTs were collected from calibrated VISSIM

models and estimated by Kalman filter algorithms under imperfect MPR conditions. It is

worth noting that an AKF was employed to improve the prediction performance as the

AKF could dynamically adjust coefficients for the system and observation noise under the

congested situation. The project team also considered two cases of available data:

 Case 1: “CV and Infra.” Data are obtained from both CVs (e.g., travel time)

and infrastructure sensors (e.g., total number of vehicles).

 Case 2: “CV Only.” Data are obtained from the CVs only.

6. The effectiveness of the CTR algorithm was evaluated by comparing its results with the

actuated traffic signal control under various values of MPR in terms of mobility and

environmental sustainability. The selected performance measurements included travel

time, average speed, throughput, delay, 𝐶𝑂2 emissions, and fuel consumption.

5

Kalman Filter Algorithms

The CTT is a key factor when the CTR algorithm determines the next signal phase. In other words,

the performance of the CTR algorithm depends on the accuracy of the CTT. As measurement of

the CTT depends on MPR, a low MPR would likely undermine the CTR algorithm’s performance.

To help solve this problem, an advanced prediction technique can be employed to improve the

estimation accuracy of the CTTs. To this end, this research applied Kalman filter algorithms to

compensate for imperfect market penetration.

The Kalman filter technique has been widely implemented to estimate future traffic conditions

using collected data [22]–[24]. This method relies on stochastic and dynamic models that describe

the behavior of the state-space vector and the relationship between the state space and the

measurement vector. The algorithm works by using a two-step process that involves a time update

and a measurement update. In the first step, the algorithm estimates the current state variables,

along with their uncertainties. Once the outcome of the next measurement is observed, these

estimates are updated using a weighted average in the second step, with more weight being given

to estimates with higher certainty. In addition, this algorithm can run in real time using only the

present input measurements and the previously calculated state and its uncertainty matrix because

of the algorithm’s recursive nature.

The state-space equation in Equation (1) explains the current state (𝑥𝑘) that is the result of the

previous state (𝑥𝑘−1), the previous input action (𝑢𝑘−1), and the noise from the previous time step.

The measurement equation presented in Equation (2) explains the current measurement (𝑧𝑘) that

results from the current estimated states with noise. 𝑤𝑘 and 𝑣𝑘 are process noise and measurement

noise with variance of 𝑄 and 𝑅 , and are assumed to have a Gaussian noise distribution. The

observation matrix, H, in Equation (2), is employed to adjust the difference between the measured

states (the collected CTTs from CVs) and the predicted states (the obtained CTTs from the state-

space equation). If MPR is 100%, the observation matrix should be an identity matrix.

 State-space equation: 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1, (1)

where A is the transition matrix for state mapping, B is the transition matrix for input

mapping, and 𝑤𝑘 ~ 𝑁(0, 𝑄).

 Measurement equation: 𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘, (2)

where H is the observation matrix and 𝑣𝑘 ~ 𝑁(0, 𝑅).

The transition matrices A and B in Equation (1) are employed to account for the relationship

between control activities and the results. These matrices need to be determined by considering

road and traffic characteristics such as geometric condition (i.e., the number of lanes for each

phase), volume (i.e., the number of approaching vehicles), and signal status because the cumulative

travel time could be affected by various external activities. Hence, the project team utilized

6

Equation (3), which comes from a previous study [25]. As noted, when MPR is 100%, the

observation matrix becomes an identity matrix. If infrastructure sensors are not installed (e.g., loop

detectors), the total number of vehicles (𝑞𝑖 in Equation [3]) is not available. In this case, this

equation is modified as Equation (4).

 Case 1: CV and Infra

𝑡𝑖,𝑘 = 𝛼𝑡𝑖,𝑘−1 + 𝛽𝑞𝑖,𝑘−1 + 𝜇𝑔𝑖,𝑘−1 + 𝜎𝑁𝐿𝑖 (3)

𝑡𝑗,𝑘 = 𝛾𝑡𝑗,𝑘−1 + 𝛿𝑡𝑖′,𝑘−1 + 𝜀𝑞𝑗,𝑘−1 + 𝜏𝑔𝑗,𝑘−1

 Case 2: CV Only

𝑡𝑖,𝑘 = 𝛼𝑡𝑖,𝑘−1 + 𝜇𝑔𝑖,𝑘−1 + 𝜎𝑁𝐿𝑖 (4)

𝑡𝑗,𝑘 = 𝛾𝑡𝑗,𝑘−1 + 𝛿𝑡𝑖′,𝑘−1 + 𝜏𝑔𝑗,𝑘−1

where:

𝑡𝑘: cumulative travel time at time interval 𝑘

𝑞𝑖,𝑘−1: vehicle counts of phase 𝑖 at 𝑘 − 1

𝑔𝑖,𝑘−1: length of green time of phase 𝑖 at 𝑘 − 1

𝑁𝐿𝑖: the number of lanes of phase 𝑖
𝑖, 𝑗: the number of phases for through traffic and left turns based on the National

Electrical Manufacturers Association (NEMA) standard, respectively

𝑖′: the number of through traffic phases corresponding to left-turn traffic

𝑗: the number of phases for left turns

𝛼, 𝛽, 𝛾, 𝛿, 𝜀, 𝜇, 𝜏, 𝜎: coefficients.

The covariance matrices in the standard Kalman filter (SKF) can be estimated using Minimum

Norm Quadratic Unbiased Estimation (MINQUE) [26]. However, MINQUE is an offline tuning

process that is not suitable for real-time implementation. The estimation of the noise variance is

very important in order to correctly tune the filter because it determines the Kalman gain. In this

project, an AKF was considered to address this issue. The basic idea of the AKF is to update the

covariance matrices at every time interval by using a covariance matching technique called

multiple model adaptive estimation (MMAE) [27] to reduce uncertainty in the error of covariance.

Generally, the procedure for the AKF is as follows:

1. The state propagation and prior state estimation error covariance are estimated.

2. Observation errors are computed.

3. The observation process covariance matrix is updated.

4. The Kalman gain is calculated.

5. The posterior state estimation and posterior state estimation error covariance are estimated.

7

6. State estimation errors are computed.

7. The state process covariance matrix is updated.

More details about the Kalman filter algorithms are available in previous studies [7], [8].

Study Apparatus

The project team designed an apparatus for eventual field implementation; however, it is important

to note that the current project did not progress to a full field implementation. Therefore, the

conceptual apparatus designed was used for bench testing and simulations of a fully-implemented

CTR algorithm in a V2X environment under various MPRs.

Bluetooth Technology as a CV Surrogate

Given that CV devices have not been widely deployed, the project team utilized Bluetooth

technology in the travel time estimation. Figure 3 shows the set of components that were utilized

to supplement the low market penetration of CV devices.

The travel time of each turning movement at an intersection was captured using Bluetooth

technology. This required position information to be acquired from each Bluetooth device. There

have been several research efforts to identify the position of Bluetooth devices to accommodate

location-based services under the Bluetooth environment [28], [29]. In this research project, we

used a Received Signal Strength Indicator (RSSI)-based Bluetooth positioning method [29]. In a

line-of-sight (LOS) scenario, the most dominant factor affecting the strength of the radio signal is

distance between a sender and a receiver. Since a Type 2 Bluetooth reader has a communication

radius of 10 to 20 meters, it operates in an LOS condition when approaching an intersection. Thus,

analyzing RSSI will most likely allow the distance to the Bluetooth device to be captured precisely,

as shown in Figure 3. By utilizing this distance information, the project team developed an

algorithm to estimate the CTT of each turning movement. The Zigbee module, shown inFigure 3,

wirelessly sent the data collected from the Bluetooth reader to roadside equipment (RSE).

8

Figure 3. Conceptual illustration of RSSI-based distance measurement for Bluetooth devices and sensor unit

components.

Hardware-in-the-Loop Simulation (HILS) of CTR Algorithm in Traffic Controller

When a new traffic signal control logic or a new or updated traffic controller is to be deployed in

the field, traffic engineers can utilize hardware-in-the-loop simulation (HILS). The project team

developed a HILS [30] environment to operate the CTR algorithm. The HILS consisted of a 2070L

traffic signal controller, controller interface device (CID), a Bluetooth reader developed by Lee et

al. [31], a communication device between the server and Bluetooth reader, and VISSIM.

Figure 4 illustrates the HILS configuration for analyzing the CTR algorithm under a CV

environment. First, Bluetooth readers capture the Medium Access Control (MAC) addresses of

Bluetooth devices in approaching individual vehicles in each direction every 5 seconds. Second,

the collected MAC addresses are transmitted from Bluetooth readers to a remote server through

Zigbee-based short-range communications [31]. The MAC address data are stored in a database in

the server computer. Third, a program on the server matches the MAC addresses from downstream

and upstream for each direction and computes the travel time of equipped vehicles in real time.

Fourth, using these travel times, the CTR algorithm determines the next green phase timing and

sends this information to the CID. Fifth, the CID converts digital signals to analog signals, and this

signal is sent to controller hardware. In addition, the controller sends the signal information to the

signal head. Since Step 5 is not available for indoor experiments, the project team only

implemented Steps 1 through 4 when analyzing the CTR algorithm in the HILS configuration.

9

Figure 4. HILS configuration for CTR algorithm.

VISSIM was used to establish a simulation-based environment for analysis of the CTR algorithm.

In addition, a C# programming language on VISSIM’s COM interface, which allows additional

external control of a simulation model, was used to implement the CTR algorithm. Figure 5

describes the simulation-based analysis procedure in this research using the VISSIM COM

interface for the CTR algorithm. At time interval t, VISSIM collects elapsed time information for

equipped vehicles as travel time measurements for each phase (e.g., phase numbers 1, 3, 5 and 7

in the NEMA standard) and sends the information to the CTR algorithm. If MPR is 100%, the

CTR algorithm immediately calculates CTTs. If MPR is imperfect, CTTs are estimated from

Kalman filter algorithms, either SKF or AKF. To calculate the matrices in the Kalman filter

algorithms, this study used the dynamic linked library in MATLAB. Once the largest CTT phase

is determined as next green phase using the estimated CTTs, the current green signal is either

extended or switched to the largest CTT phase by the CTR algorithm.

In the actual implementation of the CTR algorithm, it would be crucial to apply a suitable update

interval to evaluate the CTT of each phase and determine the next green phase. The previous

simulation-based evaluation research [22] on the CTR algorithm used a 5-second update interval.

In this research, the impact of update intervals was investigated using various intervals (i.e., 4, 5,

6, and 7 seconds). It turned out that the results under these intervals were not statistically

significantly different. Thus, the CTR algorithm under 5 seconds update interval was used

throughout this reserach.

10

Figure 5. Simulation-based analysis procedure.

Sensor Configuration for Collecting Travel Time Data

Figure 6 shows the configuration of devices used to collect travel time data from Bluetooth signals.

To configure the Raspberry Pi and sensors, we installed the Rasbian operating system on the

Raspberry Pi. For efficiency, we used Putty (www.putty.org)—an open source client supporting a

Secure Shell (SSH) connection—to run Terminal (Linux command) in the Raspberry Pi at a laptop

computer. Then, we connected a Bluetooth sensor and communication device to the Raspberry Pi.

Before we used the sensor combination, the Bluetooth reader needed to be configured for time

interval and the number of MAC addresses that the Bluetooth reader could read during the time

interval. For these, several Python scripts developed in this project were copied to the Raspberry

Pi. “Serialtest.py” was used to set the Bluetooth reader, and “MultiBT.py” was used to collect

Bluetooth MAC addresses and save them on the Raspberry Pi.

To configure communication devices, we combined the Zigbee shield and Zigbee module with an

Arduino that can connect the central processing unit (CPU) board to a variety of interchangeable

add-on modules known as shields. We set Arduino and Zigbee as follows: i) The Arduino website

(www.arduino.cc) provides a basic installation program for Arduino with Zigbee, and ii) the DIGI

website (www.digi.com) supports XCTU software to set up the Zigbee module as a coordinator or

router. To maximize the scanning range of the sensor considering vehicles’ height, we recommend

a height of approximately 5 to 6 feet for installation of the sensor.

http://www.putty.org)—an
http://www.arduino.cc/
http://www.digi.com/

11

Figure 6. Configuration of devices.

Simulation

Study Area Calibration

Once the HILS results indicated that the CTR algorithm worked as expected and the results were

promising, the team presented the findings to Virginia Department of Transportation (VDOT)

traffic engineers and requested permission to deploy the CTR algorithm at the test site intersection.

The Lee Highway and Nutley Street intersection on the Northern Virginia Connected Vehicle Test

Bed [32] was selected, as shown in Figure 7. The intersection operates according to actuated signal

control. Nutley Street connects to Interstate 66 as well as Lee Highway, and there are high inbound

traffic volumes during peak hours. To establish and calibrate a simulation environment of the study

area, field data (e.g., traffic volume, geometrical characteristics, and signal timing plans) were

collected during a peak hour (7 a.m. to 8 a.m.) and an off-peak hour (3 p.m. to 4 p.m.). The

eastbound and westbound approaches have permitted exclusive left-turn signals; the southbound

and northbound approaches have protected through-left-turn signals.

12

Figure 7. VISSIM network for study area [33].

Two sets of traffic volume data were collected in the study area during peak and off-peak hours.

In both, higher traffic volume rates were found at Lee Highway (i.e., east-west directions) than at

Nutley Street. The left-turn traffic in the southbound direction and the right-turn traffic in the

westbound direction had higher volume rates than through traffic due to the traffic volume going

to and from I-66. The VISSIM simulation environment was calibrated and compared in terms of

using total travel time and average speed by mean absolute percentage error (MAPE), as described

in Table 2. The MAPEs ranged from 5% to 15%. Measures of effectiveness (MOEs) regarding

operational efficiency and environmental sustainability were analyzed across 10 replications to

assess the performance of the CTR algorithm.

Table 2. Simulation Results Using Existing Traffic Signal Timing and Traffic Volume

Parameters Peak hour Off-peak hour

Volume (vehicles/h)

Total travel time (h) 169.089 (MAPE 5%) 98.659 (MAPE 13%)

Average speed (mph) 11.040 (MAPE 15%) 16.697 (MAPE 8%)

Delay (s) 92.310 48.214

𝐂𝐎𝟐 (kg/unit) 0.787 0.473

Fuel (kg/unit) 0.615 0.315

13

Model Estimation for Kalman Filter Algorithms in the CTR Algorithm

In the state-space equation, coefficients were estimated considering external traffic characteristics

such as the number of lanes, the existence of a left-turn bay, and signal status. These estimated

coefficients should be statistically significant because they affect the accuracy of estimated CTTs.

To estimate coefficients by a regression model, the project team collected 2,880 data records,

including CTTs, the number of vehicles, and length of green time from the calibrated VISSIM

simulation and used SPSS 22, which is a statistical analysis package. Considering data availability,

two types of state-space equations were developed, as shown in Table 3: one set for the case when

both CV and infrastructure sensor data are available (Case 1: “CV and Infra”) and a second set for

the case when only CV data are available (Case 2: “CV Only”). All parameters are statistically

significant with a 95% significance level for both equations, and 𝑅2 values, which represent model

performance, are close to 1.0. Using coefficients for each equation, Equations (3) and (4) can be

written as Equations (5) and (6), respectively.

 Case 1: CV and Infra

𝑡𝑖,𝑘 = 0.85 ∙ 𝑡𝑖,𝑘−1 + 3.33 ∙ 𝑞𝑖,𝑘−1 − 22.90 ∙ 𝑔𝑖,𝑘−1 + 8.13 ∙ 𝑁𝐿𝑖 (5)

𝑡𝑗,𝑘 = 0.92 ∙ 𝑡𝑗,𝑘−1 − 0.01 ∙ 𝑡𝑖′,𝑘−1 + 4.11 ∙ 𝑞𝑗,𝑘−1 − 22.48 ∙ 𝑔𝑗,𝑘−1

 Case 2: CV Only

𝑡𝑖,𝑘 = 0.92 ∙ 𝑡𝑖,𝑘−1 − 22.81 ∙ 𝑔𝑖,𝑘−1 + 13.68 ∙ 𝑁𝐿𝑖 (6)

𝑡𝑗,𝑘 = 0.98 ∙ 𝑡𝑗,𝑘−1 + 0.02 ∙ 𝑡𝑖′,𝑘−1 − 19.06 ∙ 𝑔𝑗,𝑘−1

Table 3. Regression Model to Estimate Coefficients in Kalman Filter Using Simulated Data

Scenario Equations

Model Summary Performance

Parameter B Std. Error t Sig. 𝑹 𝑹𝟐 Adjusted 𝑹𝟐

CV and

Infra

Equation

for THRU

𝛼 0.85 0.01 67.81 0.00

0.976 0.953 0.953
𝛽 3.33 0.49 6.72 0.00

𝜇 -22.90 0.89 -25.81 0.00

𝜎 8.13 1.12 7.23 0.00

Equation

for LT

𝛾 0.92 0.01 109.61 0.00

0.975 0.951 0.951
𝛿 -0.01 0.01 -2.20 0.03

𝜀 4.11 0.28 14.83 0.00

𝜏 -22.48 0.74 -30.41 0.00

CV Only

Equation

for THRU

𝛼 0.92 0.01 167.64 0.00

0.976 0.952 0.952 𝜇 -22.81 0.89 -25.52 0.00

𝜎 13.68 0.77 17.79 0.00

𝛾 0.98 0.01 132.81 0.00 0.973 0.947 0.947

14

Scenario Equations

Model Summary Performance

Parameter B Std. Error t Sig. 𝑹 𝑹𝟐 Adjusted 𝑹𝟐

Equation

for LT

𝛿 0.02 0.01 2.78 0.01

𝜏 -19.06 0.73 -26.16 0.00

NOTE: THRU is through; LT is left turn.

Scenarios and MOEs

Eleven different MPR values were applied to the simulation scenarios to evaluate the CTR

algorithm. The MPRs ranged from 0% (current signal control) to 100% (perfect CV environment)

and were incremented by 10%. The team used two sets of traffic volume data, including a peak

hour and an off-peak hour. In addition, two types of communication techniques and two types of

Kalman filters were considered. Thus, a total of 82 scenarios were developed to evaluate the CTR

algorithm, and five replications were made for each scenario. For comparison purposes, the team

employed the following MOEs: total travel time (h), average speed (mph), and delay (s) as mobility

measures, and the amount of 𝐶𝑂2 emissions per vehicle and fuel consumption as environmental

sustainability measures. In addition, the VT-Micro model [34] was employed to estimate the

emissions and fuel consumption for each scenario using speed and acceleration in vehicle

trajectory data collected by the VISSIM simulation.

Table 4. Analysis Scenarios

Traffic signal

control
MPR (%)

Scenario number

Peak hour Off-peak hour

CV and Infra CV Only CV and Infra CV Only

Actuated signal

control
- 1 - 42 -

CTR algorithm

with SKF

10 2 22 43 63

20 3 23 44 64

30 4 24 45 65

40 5 25 46 66

50 6 26 47 67

60 7 27 48 68

70 8 28 49 69

80 9 29 50 70

90 10 30 51 71

100 11 31 52 72

CTR algorithm

with AKF

10 12 32 53 73

20 13 33 54 74

30 14 34 55 75

40 15 35 56 76

50 16 36 57 77

15

Traffic signal

control
MPR (%)

Scenario number

Peak hour Off-peak hour

CV and Infra CV Only CV and Infra CV Only

60 17 37 58 78

70 18 38 59 79

80 19 39 60 80

90 20 40 61 81

100 21 41 62 82

Results

Feasibility of the CTR Algorithm

Through simulation, the effectiveness of the CTR algorithm compared with the actuated signal

control algorithm was evaluated and results are shown in Figure 8 through Figure 12 in terms of

MPRs, volume scenarios, communication types, and Kalman filter algorithms. The existing

actuated signal control is considered to be up-to-date, as the Northern Virginia traffic engineers

have maintained the timing plans well in the area.

Generally, the CTR algorithm’s performance improved as the rate of CV-equipped vehicles

increased. With 100% MPR under a V2X communication environment, the CTR algorithm

significantly improved mobility when compared to the actuated signal control at peak hour; total

travel time decreased by 45%–47%, average speed increased by 96%–101%, and delay decreased

by 71%–73%. Moreover, at the off-peak hour, travel time decreased by 37%–42%, average speed

increased by 57%–70%, and delay decreased by 61%–69%. In terms of environmental

sustainability, CO2 emissions increased by 1%–2% and fuel consumption decreased by 3%–6%;

however, these findings were not significant.

Effectiveness of Prediction Technique

An interesting finding is that the CTR algorithm showed different performance by type of Kalman

filter algorithm under low MPR conditions. At the off-peak hour, the performance of the CTR

algorithm with SKF (represented by rectangle marks in Figure 8 through Figure 12) was about

5%–10% better than that with the AKF (represented by circle marks in Figure 8 through Figure

12). Moreover, the minimum required MPR of the SKF (10%) was lower than that of the AKF

(20%). However, the AKF’s results were better than the SKF’s results at peak hour. In addition,

the minimum required MPR of the AKF (20%) was lower than the SKF (30%). Therefore, to

guarantee the CTR algorithm’s performance for both traffic demands, 30% and 20% MPR would

be needed for the SKF and the AKF, respectively. Because the AKF showed better performance

than the SKF under imperfect MPR, the AKF is recommended as a prediction technique for the

CTR algorithm.

16

Effectiveness of Data Availability

If information from connected infrastructure is not available, a high CV MPR should be ensured

for effective operation of the CTR algorithm. According to the comparison results between the

“CV and Infra” (solid line in the figures below) and “CV Only” (dotted or dashed line in the figures

below) cases, the minimum required MPRs for the CTR algorithm were 50%–60% at the peak

hour and 90% at the off-peak hour to outperform the current actuated traffic signal control. Even

at the same MPR for the peak and off-peak hours, the results of the CTR algorithm’s performance

are different. This is because the quality of information for operating the CTR algorithm is

influenced by the number of equipped vehicles. Therefore, infrastructure sensor data are needed

for stable algorithm performance. On the other hand, even if there are no infrastructure sensors at

the intersection, the CTR algorithm could be considered where high traffic demand is found with

60% MPR. Furthermore, the CTR algorithm could improve mobility over actuated traffic signal

control even if MPR is under 50% when the AKF is used.

Figure 8. Total travel time (h): peak hour (left), off-peak hour (right).

Figure 9. Average speed (mph): peak hour (left), off-peak hour (right).

17

Figure 10. Delay (s): peak hour (left), off-peak hour (right).

Figure 11. CO2 (kg/unit): peak hour (left), off-peak hour (right).

Figure 12. Fuel consumption (kg/unit): peak hour (left), off-peak hour (right).

MPR at the Study Area

The project team investigated the MPR—the percentage of vehicles that have Bluetooth devices—

at the study area. We installed eight Bluetooth readers, four communication devices, and a video

camera as shown in Figure 13. From 6:30 p.m. to 7:30 p.m. on September 2, 2015, we video

recorded the number of vehicles that passed the intersection for both eastbound and westbound

traffic as the Bluetooth readers collected Bluetooth MAC addresses. To maximize the number of

Bluetooth MAC addresses collected, we installed the devices at a height of 5 feet.

18

Figure 13. Sensor installation at the study area to investigate the MPR [33].

As shown in Table 5, we counted 762 and 1,784 vehicles traveling eastbound and westbound for

an hour, respectively. Of these vehicles, 148 and 224 unique MAC addresses were collected for

the same hour. Hence, the data collected at the study area revealed that the MPRs were 19.42% for

eastbound and 12.56% for westbound. We found issues that the MAC addresses of iOS devices

could be collected only when the Bluetooth pairing mode was turned on; however, if the device

was in an enclosed space such as a bag or a pocket, the MAC address could not be collected. If the

MAC addresses could have been collected from the iOS devices as well, we would have expected

the field MPRs to exceed the minimum MPR. Given that market penetrations and the percentage

of matched vehicles from the field testing were much lower than the minimum required MPR, it

is recommended not to implementat the CTR algorithm in the field.

Table 5. Collected Unique MAC Addresses and Computed MPR of the Study Area

Direction Volume (vph) Number of unique MAC address MPR (%)

Eastbound 762 148 19.42

Westbound 1784 224 12.56

Conclusion and Recommendations
To verify the feasibility of field implementation in the near future, the project team enhanced and

evaluated a CTR real-time intersection control algorithm under various conditions, considering

MPR, traffic demand, and types of available data. An existing intersection in the Northern Virginia

Connected Vehicle Test Bed was simulated within VISSIM under the current traffic signal timing

plans and volumes of peak and off-peak hours. Two CTT estimation techniques, SKF and AKF,

19

were applied for each phase in the CTR algorithm. In addition, a configuration based on HILS was

proposed to test the feasibility of implementing the CTR algorithm in the field. Following are

findings from this evaluation.

1. The CTR algorithm improved mobility compared with the actuated traffic signal control

when MPR exceeded 30% with the SKF and 20% with the AKF. At 100% MPR, total

travel time, average speed, and delay were significantly enhanced when compared with the

current actuated traffic signal control. Without installation of infrastructure sensors, the

CTR algorithm could be considered if the intersection has high traffic demand with 50%–

60% MPR.

2. We found that the AKF outperformed the SKF at peak hour because it reduced the

uncertainties with the process and observation noise statistics. Although environmental

sustainability was not much improved, the CTR algorithm is highly expected to improve

mobility performance under a CV environment.

3. As expected, the CTR algorithm’s performance largely depends on the MPR because

information from CVs is a key factor of the CTR algorithm. Given the low market

penetrations and the percentage of matched vehicles found in the field testing, it is not

currently recommended to consider implementation of the CTR algorithm in the field.

4. However, the team found that the perfect MPR requirement for the CTR algorithm could

be relaxed (i) when data were collected from both CV and infrastructure sensors, and (ii)

when AKF was adopted in the CTR algorithm.

5. The team could not implement the proposed algorithm because the measured field MPR

was much lower than the minimum required MPR. Instead, the team developed an

implementation plan for the CTR algorithm that can be easily adopted by traffic engineers

once the field MPR reaches minimum requirements. Also, the system developed in this

research is ready to be deployed and can be used for testing any new control algorithms

within a risk-free research environment.

Although useful insights were found in this research, there are several challenges for successful

implementation of the CTR algorithm in the field. The performance of communication devices

should be considered because it affects the reliability of the data collected from CVs. For reliable

information, advanced communication protocols, such as Dedicated Short-Range

Communications (DSRC), might be needed to minimize packet losses and latencies of data

delivery. The findings of this research are expected to be of great use in trying to implement the

CTR algorithm with minor modifications in the field to improve network performances.

20

Implementation Plan for the CTR Algorithm

Although a full field test of was not feasible at the time of the research due to the low MPR of

CVs, the research team developed an implementation plan that can be used in the future.

Figure 14 illustrates the implementation plan for the CTR algorithm. Once Bluetooth readers read

MAC addresses, a Zigbee that is set up as a router and connected to a Raspberry Pi sends these

MAC addresses to another Zigbee that is set up as a coordinator and connected to a server. As

shown in the appendix, the “BTcollect” code sorts vehicles’ MAC addresses from observed data

by signal strength and saves them in a database. The “TTCalc” code matches unique MAC

addresses upstream and downstream of the intersection for each approach and calculates the

vehicle’s travel time. The CTR algorithm uses these travel time data to determine the next green

phase.

Figure 14. Implementation plan of the CTR algorithm at an intersection.

Components

To implement the CTR algorithm, the following components are required.

 Devices

o Raspberry Pi and Micro SD card

o Bluetooth reader

o Communication devices: Zigbee shield, Zigbee module, and Arduino

o Traffic signal controller hardware, CID

21

 Source codes

o CTR algorithm code

o Python code for operating sensors

o Travel time calculation code

22

Reference

[1] Federal Highway Administration, “Urban Congestion Reports - Operations Performance

Measurement - FHWA Operations.”

[2] P. Mirchandani and L. Head, “A real-time traffic signal control system: architecture, algorithms,

and analysis,” Transp. Res. Part C Emerg. Technol., vol. 9, no. 6, pp. 415–432, Dec. 2001.

[3] K. Fehon and J. Peters, “Adaptive Traffic Signals, Comparison and Case Studies,” presented at the

the ITE Western District Annual Meeting, San Francisco, California, 2010.

[4] J. W. C. van Lin, “Incremental and online learning through extended kalman filtering with

constraint weights for freeway travel time prediction,” in IEEE Intelligent Transportation Systems

Conference, 2006. ITSC ’06, 2006, pp. 1041–1046.

[5] C. Antoniou, M. Ben-Akiva, and H. Koutsopoulos, “Online Calibration of Traffic Prediction

Models,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1934, pp. 235–245, Jan. 2005.

[6] Y. Wang and M. Papageorgiou, “Real-time freeway traffic state estimation based on extended

Kalman filter: a general approach,” Transp. Res. Part B Methodol., vol. 39, no. 2, pp. 141–167, Feb.

2005.

[7] Chu L., Oh J., and Recker W., “Adaptive Kalman filter based freeway travel time estimation,”

presented at the the 84th TRB Annual Meeting, Washington, DC, 2005.

[8] J. Guo, W. Huang, and B. M. Williams, “Adaptive Kalman filter approach for stochastic short-term

traffic flow rate prediction and uncertainty quantification,” Transp. Res. Part C Emerg. Technol.,

vol. 43, Part 1, pp. 50–64, Jun. 2014.

[9] R.-M. Hage, D. Betaille, F. Peyret, and D. Meizel, “Unscented Kalman filter for urban network

travel time estimation,” Procedia - Soc. Behav. Sci., vol. 54, pp. 1047–1057, Oct. 2012.

[10] H. Chen and S. Grant-Muller, “Use of sequential learning for short-term traffic flow forecasting,”

Transp. Res. Part C Emerg. Technol., vol. 9, no. 5, pp. 319–336, Oct. 2001.

[11] H. Yin, S. C. Wong, J. Xu, and C. K. Wong, “Urban traffic flow prediction using a fuzzy-neural

approach,” Transp. Res. Part C Emerg. Technol., vol. 10, no. 2, pp. 85–98, Apr. 2002.

[12] Jiang X. and Adeli H., “Dynamic Wavelet Neural Network Model for Traffic Flow Forecasting,” J.

Transp. Eng., vol. 131, no. 10, pp. 771–779, 2005.

[13] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Optimized and meta-optimized neural

networks for short-term traffic flow prediction: A genetic approach,” Transp. Res. Part C Emerg.

Technol., vol. 13, no. 3, pp. 211–234, Jun. 2005.

[14] Dunne S. and Ghosh B., “Regime-Based Short-Term Multivariate Traffic Condition Forecasting

Algorithm,” J. Transp. Eng., vol. 138, no. 4, pp. 455–466, 2012.

[15] L. Zhang, Q. Liu, W. Yang, N. Wei, and D. Dong, “An Improved K-nearest Neighbor Model for

Short-term Traffic Flow Prediction,” Procedia - Soc. Behav. Sci., vol. 96, pp. 653–662, Nov. 2013.

[16] I. H. Zohdy and H. Rakha, “Game theory algorithm for intersection-based cooperative adaptive

cruise control (CACC) systems,” in 2012 15th International IEEE Conference on Intelligent

Transportation Systems (ITSC), 2012, pp. 1097–1102.

[17] J. Lee and B. Park, “Development and Evaluation of a Cooperative Vehicle Intersection Control

Algorithm Under the Connected Vehicles Environment,” IEEE Trans. Intell. Transp. Syst., vol. 13,

no. 1, pp. 81–90, Mar. 2012.

[18] S. Ilgin Guler, M. Menendez, and L. Meier, “Using connected vehicle technology to improve the

efficiency of intersections,” Transp. Res. Part C Emerg. Technol., vol. 46, pp. 121–131, Sep. 2014.

[19] Y. Dujardin, D. Vanderpooten, and F. Boillot, “A multi-objective interactive system for adaptive

traffic control,” Eur. J. Oper. Res., vol. 244, no. 2, pp. 601–610, Jul. 2015.

[20] Y. Feng, K. L. Head, S. Khoshmagham, and M. Zamanipour, “A real-time adaptive signal control in

a connected vehicle environment,” Transp. Res. Part C Emerg. Technol., vol. 55, pp. 460–473, Jun.

2015.

[21] Planung Transport Verkehr (PTV), VISSIM 5.40 User Manual. Karlsruhe, Germany: PTV, 2009.

23

[22] Lee J., Park B., and Yun I., “Cumulative Travel-Time Responsive Real-Time Intersection Control

Algorithm in the Connected Vehicle Environment,” J. Transp. Eng., vol. 139, no. 10, pp. 1020–

1029, 2013.

[23] A. Stathopoulos and M. G. Karlaftis, “A multivariate state space approach for urban traffic flow

modeling and prediction,” Transp. Res. Part C Emerg. Technol., vol. 11, no. 2, pp. 121–135, Apr.

2003.

[24] S. Shekhar and B. Williams, “Adaptive Seasonal Time Series Models for Forecasting Short-Term

Traffic Flow,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2024, pp. 116–125, Jan. 2008.

[25] J. Guo and B. Williams, “Real-Time Short-Term Traffic Speed Level Forecasting and Uncertainty

Quantification Using Layered Kalman Filters,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2175,

pp. 28–37, Dec. 2010.

[26] O. Ziqiang, “Estimation of variance and covariance components,” Bull. Géod., vol. 63, no. 2, pp.

139–148, Jun. 1989.

[27] K. Xiong, C. L. Wei, and L. D. Liu, “Robust multiple model adaptive estimation for spacecraft

autonomous navigation,” Aerosp. Sci. Technol., vol. 42, pp. 249–258, Apr. 2015.

[28] U. Bandara, M. Hasegawa, M. Inoue, H. Morikawa, and T. Aoyama, “Design and implementation

of a Bluetooth signal strength based location sensing system,” in 2004 IEEE Radio and Wireless

Conference, 2004, pp. 319–322.

[29] S. Zhou and J. K. Pollard, “Position measurement using Bluetooth,” IEEE Trans. Consum.

Electron., vol. 52, no. 2, pp. 555–558, May 2006.

[30] D. Bullock, B. Johnson, R. B. Wells, M. Kyte, and Z. Li, “Hardware-in-the-loop simulation,”

Transp. Res. Part C Emerg. Technol., vol. 12, no. 1, pp. 73–89, Feb. 2004.

[31] J. Lee, Z. Zhong, B. Du, S. Gutesa, and K. Kim, “Low-Cost and Energy-Saving Wireless Sensor

Network for Real-Time Urban Mobility Monitoring System,” J. Sens., vol. 2015, p. e685786, Sep.

2015.

[32] “Connected vehicle Virginia test bed,” Connected Vehicle/Infrastructure University Transportation

Center (CVI-UTC). [Online]. Available: http://cvi-utc.org/?q=node/36. [Accessed: 04-Apr-2016].

[33] “Google Maps,” Google Maps. [Online]. Available: https://www.google.com/maps/@38.0400874,-

78.4849739,13z. [Accessed: 04-Apr-2016].

[34] Ahn K., Rakha H., Trani A., and Van Aerde M., “Estimating Vehicle Fuel Consumption and

Emissions based on Instantaneous Speed and Acceleration Levels,” J. Transp. Eng., vol. 128, no. 2,

pp. 182–190, 2002.

24

Appendix

Source Code for Operating the CTR Algorithm

Setting a Bluetooth Reader

Python Code: Serialtest.py

import time
import serial
import sys

configure the serial connections (the parameters differs on the device you are connecting to)
if len(sys.argv) !=3:
 print "Wrong Argument. Needs a port number and Baud rate"
 sys.exit()

if not "/dev" in sys.argv[1]:
 print "Require correct device name. e.g., /dev/ttyUSB1"
 sys.exit()

ser = serial.Serial(
 port=sys.argv[1],\
 baudrate=int(sys.argv[2]),\
 parity=serial.PARITY_NONE,
 stopbits=serial.STOPBITS_ONE,
 bytesize=serial.EIGHTBITS,\
 timeout=0)

if ser.isOpen():
 ser.close()

ser.open()
ser.isOpen()

print 'Enter your commands below.\r\nInsert "byebye" to leave the application.'

input=1
while 1 :
 # get keyboard input
 input = raw_input(">> ")
 # Python 3 users
 # input = input(">> ")
 if input == 'byebye':
 ser.close()
 exit()
 else:
 # send the character to the device
 ser.write(input + '\r\n')
 out = ''

25

 # let's wait one second before reading output (let's give device time to answer)
 time.sleep(1)
 while ser.inWaiting() > 0:
 out += ser.read(1)

 if out != '':
 print ">>" + out

Collecting Bluetooth MAC Addresses

Python Code: MultiBTs.py

import thread
import time
import serial
import sys
import os

Bluetooth Module1
def BTStart(brate, port_num, fn, btid):
 BTSerial1 = serial.Serial(
 port=port_num,\
 baudrate=brate,\
 parity=serial.PARITY_NONE,
 stopbits=serial.STOPBITS_ONE,
 bytesize=serial.EIGHTBITS,\
 timeout=0)

 if BTSerial1.isOpen():
 BTSerial1.close()

 BTSerial1.open()
 BTSerial1.isOpen()

 # Initialize
 print ("Testing....."+BTSerial1.port)

 BTSerial1.write('AT+NAME\r\n')
 time.sleep(0.1)
 out = ''
 tmpmsg = ''
 while BTSerial1.inWaiting() > 0:
 out = BTSerial1.readline()
 if not "OK" in out:
 print out.replace('\n',"")

 BTSerial1.write('AT+ROLE\r\n')
 time.sleep(0.1)
 out=BTSerial1.readlines()
 for tmpmsg in out:
 if not "OK" in tmpmsg:
 print tmpmsg.replace('\n',"")

26

 BTSerial1.write('AT+INQM=0,10,4\r\n')
 time.sleep(0.1)
 out=BTSerial1.readlines()
 for tmpmsg in out:
 if not "OK" in tmpmsg:
 print tmpmsg.replace('\n',"")

 BTSerial1.write('AT+STATE\r\n')
 time.sleep(0.1)
 while BTSerial1.inWaiting() > 0:
 out = BTSerial1.readline()
 if not "OK" in out:
 tmpmsg +=out
 print out.replace('\n',"")

 if "INITIALIZED" in tmpmsg:
 BTSerial1.write('AT+INIT\r\n')
 time.sleep(0.1)
 out = BTSerial1.readline()
 print out.replace('\n',"") +". Initialization Done"

 tmp=''
 timestamp =''
 #timestamp1 =''
 #timestamp2 =''

 while True:
 data_=''
 #timegap1 = time.clock()
 BTSerial1.write('AT+INQ\r\n')
 timestamp=time.ctime()
 time.sleep(4*1.28+0.1)
 out = BTSerial1.readlines()
 #timegap2 = time.clock()
 output = open(fn,"a")
 output.write(btid+"|"+BTSerial1.port+"|"+timestamp+"|")
 for tmpmsg in out:
 if not "OK" in tmpmsg:
 tmp = tmpmsg.replace('\n',"")
 tmp = tmp.replace('\r',"")
 tmp = tmp.replace("+INQ:","")
 data_+=tmp+"|"
 #timegap3 = time.clock()
 #gap21 = timegap2-timegap1
 #gap31 = timegap3-timegap1
 #gap32 = timegap3-timegap2
 #print '%f %f %f %s' %(gap21, gap31, gap32, BTSerial1.port+"|"+timestamp+"|"+data_+'\n')
 print btid+"|"+BTSerial1.port+"|"+timestamp+"|"+data_+'\n'
 output.write(data_+'\n')
 output.close();
 time.sleep(4*1.28)

27

Main Run

if len(sys.argv) !=3:
 print "wrong argument setting"
 print " python MultiBT.py Baud_Rate port#1(/dev/ttyUSB1) port#2(/dev/ttyUSB2)"
 sys.exit()

print " Start "
os.popen("echo ds1307 0x68 | sudo tee /sys/class/i2c-adapter/i2c-1/new_device")
os.popen("sudo hwclock --hctosys")

time.sleep(30)

strtmp_ = os.popen("sudo cat /etc/network/interfaces | grep address").read()
BTId = strtmp_.split("s ")[1]
BTId = BTId.replace('\n',"")
BTId = BTId.replace('\r',"")
#BTId = strtmp_.replace("inet ","")

output = open(BTId+".out","a")
output.write("\n\n")
output.write("# Begin Scanning at "+time.ctime()+"\n")
output.close()

try:
 thread.start_new_thread(BTStart,(sys.argv[1], sys.argv[2],BTId+".out",BTId,))
 time.sleep(4*1.28+0.5)
 thread.start_new_thread(BTStart,(sys.argv[1], sys.argv[3],BTId+".out",BTId,))
except:
 print "Error"
while 1:
 pass

28

Calculating Kalman Filter Matrix

Matlab Code: Adaptive Kalman Filter

function [x_hat_k P_k dx_k diag_Q_hat] =
RunAdaptiveKalman3(al1,al2,at1,bl1,bt1,l,h,q,d,Mn,r,rx,rho,P_k_1,x_hat_k_1,u_k_1,Zk)
% from "Adaptive Kalman Filtering for INS/GPS"
% A.H Mohamed and K.P. Schwarz (1999)
% al1, al2 : Coefficents for Left-Turn's A matrix
% Scalar calculatin

 A=[al1 0 0 0 0 al2 0 0; % 1
 0 at1 0 0 0 0 0 0; %2
 0 0 al1 0 0 0 0 al2; %3
 0 0 0 at1 0 0 0 0; %4
 0 al2 0 0 al1 0 0 0; %5
 0 0 0 0 0 at1 0 0; %6
 0 0 0 al2 0 0 al1 0; %7
 0 0 0 0 0 0 0 at1]; %8

 % V(volume) L(lane)
 B=[bl1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
 0 bt1 0 0 0 0 0 0 0 l 0 0 0 0 0 0;
 0 0 bl1 0 0 0 0 0 0 0 0 0 0 0 0 0;
 0 0 0 bt1 0 0 0 0 0 0 0 l 0 0 0 0;
 0 0 0 0 bl1 0 0 0 0 0 0 0 0 0 0 0;
 0 0 0 0 0 bt1 0 0 0 0 0 0 0 l 0 0;
 0 0 0 0 0 0 bl1 0 0 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0 bt1 0 0 0 0 0 0 0 l];

 H=[h*rho(1) 0 0 0 0 0 0 0;
 0 h*rho(2) 0 0 0 0 0 0;
 0 0 h*rho(3) 0 0 0 0 0;
 0 0 0 h*rho(4) 0 0 0 0;
 0 0 0 0 h*rho(5) 0 0 0;
 0 0 0 0 0 h*rho(6) 0 0;
 0 0 0 0 0 0 h*rho(7) 0;
 0 0 0 0 0 0 0 h*rho(8)];

 Q=[q(1) 0 0 0 0 0 0 0;
 0 q(2) 0 0 0 0 0 0;
 0 0 q(3) 0 0 0 0 0;
 0 0 0 q(4) 0 0 0 0;
 0 0 0 0 q(5) 0 0 0;
 0 0 0 0 0 q(6) 0 0;
 0 0 0 0 0 0 q(7) 0;
 0 0 0 0 0 0 0 q(8)];

 rLen = length(r)/8; % Memory Size

 N=rLen;

 if (N>Mn)

29

 N=Mn;
 end

 c=1;
 rsum=0;
 dsum=0;
 for i=1:N,
 vk = zeros(8,1);
 dxk = zeros(8,1);
 for j=1:8
 vk(j) = r(c);
 dxk(j) = d(c);
 c=c+1;
 end
 rsum=rsum+vk'*vk;
 dsum=dsum+dxk'*dxk;
 end

 C_hat_vk = rsum/N;
 C_hat_dxk = dsum/N;

 if C_hat_vk == 0
 C_hat_vk = rx;
 end

 R=C_hat_vk*eye(8,8)+H*P_k_1*H';
 x_pri_hat_k = A*x_hat_k_1'+B*u_k_1';
 P_pri_k = A*P_k_1*A'+Q;
 K_k = P_pri_k*H'*inv(H*P_pri_k*H'+R);
 x_hat_k = x_pri_hat_k + K_k*(Zk'-H*x_pri_hat_k);
 P_k = (eye(8,8)-K_k*H)*P_pri_k;
 dx_k = x_hat_k- x_pri_hat_k;
 Q_hat = C_hat_dxk*eye(8,8)+P_k-A*P_k_1*A';
 diag_Q_hat = abs(diag(Q_hat));
end

Matlab Code: Standard Kalman Filter

function [x_hat_k P_k dx_k diagQ] =
RunKalmanNOGR(al1,al2,at1,bl1,bt1,l,h,qlt,qth,r,rho,P_k_1,x_hat_k_1,u_k_1,Zk)

 A=[al1 0 0 0 0 al2 0 0; % 1
 0 at1 0 0 0 0 0 0; %2
 0 0 al1 0 0 0 0 al2; %3
 0 0 0 at1 0 0 0 0; %4
 0 al2 0 0 al1 0 0 0; %5
 0 0 0 0 0 at1 0 0; %6
 0 0 0 al2 0 0 al1 0; %7
 0 0 0 0 0 0 0 at1]; %8

 % V(volume) L(lane)
 %------------------- ---------------
 B=[bl1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

30

 0 bt1 0 0 0 0 0 0 0 l 0 0 0 0 0 0;
 0 0 bl1 0 0 0 0 0 0 0 0 0 0 0 0 0;
 0 0 0 bt1 0 0 0 0 0 0 0 l 0 0 0 0;
 0 0 0 0 bl1 0 0 0 0 0 0 0 0 0 0 0;
 0 0 0 0 0 bt1 0 0 0 0 0 0 0 l 0 0;
 0 0 0 0 0 0 bl1 0 0 0 0 0 0 0 0 0;
 0 0 0 0 0 0 0 bt1 0 0 0 0 0 0 0 l];

 H=[h*rho(1) 0 0 0 0 0 0 0;
 0 h*rho(2) 0 0 0 0 0 0;
 0 0 h*rho(3) 0 0 0 0 0;
 0 0 0 h*rho(4) 0 0 0 0;
 0 0 0 0 h*rho(5) 0 0 0;
 0 0 0 0 0 h*rho(6) 0 0;
 0 0 0 0 0 0 h*rho(7) 0;
 0 0 0 0 0 0 0 h*rho(8)];

 Q=[qlt 0 0 0 0 0 0 0;
 0 qth 0 0 0 0 0 0;
 0 0 qlt 0 0 0 0 0;
 0 0 0 qth 0 0 0 0;
 0 0 0 0 qlt 0 0 0;
 0 0 0 0 0 qth 0 0;
 0 0 0 0 0 0 qlt 0;
 0 0 0 0 0 0 0 qth];

 R = r*eye(8,8);
 %P_k_1=eye(8,8);

 %x_k_1 = [10 11 16 13 14 15 16 17];
 %u_k_1 = [11 12 13 14 15 16 17 18 0 1 0 2 0 3 0 4];

 x_pri_hat_k = A*x_hat_k_1'+B*u_k_1';
 P_pri_k = A*P_k_1*A'+Q;
 K_k = P_pri_k*H'*inv(H*P_pri_k*H'+R);
 x_hat_k = x_pri_hat_k + K_k*(Zk'-H*x_pri_hat_k);
 P_k = (eye(8,8)-K_k*H)*P_pri_k;
 dx_k = x_hat_k - x_pri_hat_k;
 diagQ = abs(diag(Q));
end

31

Operating the CTR Algorithm

C# Code: CTR2015
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using RunAdaptiveKalman;
using MathWorks.MATLAB.NET.Arrays;
using MathWorks.MATLAB.NET.Utility;
using VISSIM_COMSERVERLib;
using System.IO;

namespace CTR2015
{
 class Program
 {
 static public Vissim vissim;
 public static Dictionary<int, double> Z = new Dictionary<int, double>();
 public static Dictionary<int, double> u = new Dictionary<int, double>();

 public static double[] MatZ = new double[8];
 public static double[] MatU;

 public static int[] LinkIDs = { 1000002, 1000009, 1000005, 1000012, 1000008,
1000003, 1000011, 1000006 };
 public static StreamWriter sw;
 public static double[] x_hat_pos_k_1 = new double[8]; // x^(k-1)
 public static double[] P_k_1 = new double[8]; //P(k-1)
 public static double[,] MatP_k_1 = new double[8, 8]; //P(k-1) for matrix
 public static double[] P_K = new double[8]; // P(k)
 public static double[] K_k = new double[8]; //K(k)
 public static double[] x_hat_pri_k = new double[8]; // x^-(k)

 public static double A = 0.916;
 public static double Al = 0.965;
 public static double B = 1.07;
 public static double Bl = 1.93;

 public static double[] MatTTime = new double[8];
 public static double[] MatRho = new double[8];

 public static int[] GreenPhase = new int[8];

 public static int Mn = 30; // memory size
 public static double K;
 public static Dictionary<int, List<double>> r = new Dictionary<int,
List<double>>();
 public static Dictionary<int, List<double>> MatR = new Dictionary<int,
List<double>>();
 public static Dictionary<int, List<double>> Matdk = new Dictionary<int,
List<double>>();
 public static Dictionary<int, List<double>> q = new Dictionary<int,
List<double>>();
 public static List<double> ListR;
 public static List<double> Listdx_k;
 public static int m = 1799;

32

 public static double[,] _diagQ_ = new double[1, 8];

 public static int rCounter = 0;

 public static RunAdaptiveKalman.Class1 OutEstimated = new Class1();

 public static StreamWriter swlog = new StreamWriter(@"c:\feedback\akf\log.csv");

 static void Main()
 {
 int i, j;

 //double[] randomnum = new double[100];

 int[] NextLinkIDs = { 1, 4, 5, 8 };
 double[,] VolSce = new double[51, 16];
 //Dictionary<int, int> RouteMap = new Dictionary<int, int>();

 string fn = @"C:\feedback\network.inp";
 string fn_ini = @"C:\feedback\vissim.ini";
 string fn_volsce = @"C:\feedback\VolumeScenarios_SORTED.csv";
 int scnNum = 50;
 int repNum = 6;
 int seed = 105;
 bool ani = true;
 double mp = 1; // Market %

 string tic;

 string[] args = new string[5];
 args[0] = "20";
 args[1] = "6";
 args[2] = "105";
 args[3] = "1";
 args[4] = "70";

 //fn = args[0];
 //fn_ini = args[1];
 //fn_volsce = args[2];
 scnNum = Convert.ToInt32(args[0]);
 repNum = Convert.ToInt32(args[1]);
 seed = Convert.ToInt32(args[2]);

 if (args[3] == "0") ani = false;

 mp = Convert.ToDouble(args[4]) / 100.0;

 InitDictionaries();

 //double[] u = new double[nphase];

 VolSce = LoadVolScen(fn_volsce, VolSce);

 vissim = new Vissim();

 InitVissim(seed, ani, fn, fn_ini, VolSce, scnNum, mp);

 //tic = DateTime.Now.Ticks.ToString();

33

 sw = new StreamWriter(@"c:\feedback\AKF\AKFRun\akf_" + scnNum + "_" + repNum +
"_" + seed + "_" + args[4] + "p.csv");

 for (i = 1; i <= 3600; i++)
 {

 KF_EstimateTotalTravelTime_Matrix_woGreen();
 //AKF_EstimateTotalTravelTime_Matrix_woGreen();
 if (!SetSignalTime(5)) // prediction free w/ LT treatment
 break;
 }

 vissim.Simulation.Stop();
 vissim.Exit();

 File.Copy(@"c:\feedback\network.npe", @"c:\feedback\AKF\AKFRUN\akf_" + scnNum +
"_" + repNum + "_" + seed + "_" + args[4] + "p.npe", true);
 sw.Close();

 Console.WriteLine("Done(akf_" + scnNum + "_" + repNum + "_" + args[4] + ")");

 swlog.Close();
 }

 private static void AKF_EstimateTotalTravelTime_Matrix_woGreen()
 {
 // Matrix Setting
 // --------- Covariances
 double Q = 2660.0;
 double Ql = 376.9;
 double R = 207.96;

 // -------- H matrix
 double H = 0.999;

 // -------- A matrix
 double al1 = 0.982;
 double al2 = -0.00457;
 double at1 = 0.916;

 // --------- B matrix
 double bl1 = 1.96; // for LT volumes
 double bt1 = 1.85; // for TH volume
 double nl = -6.44; // for TH Num Lanes (all 2)

 object VehIDs;
 int j;
 double vtime = 0.0;
 double ttime = 0.0;
 int vid;
 double N = 0.0;
 double n = 0.0;
 double rho = 0.0;

 MWArray[] OptOut = null;
 MWNumericArray x_hat_k = new MWNumericArray();
 MWNumericArray P_k = new MWNumericArray();
 MWNumericArray dx_k = new MWNumericArray();
 MWNumericArray diagQ = new MWNumericArray();

34

 // VehIDs = vissim.Net.Vehicles.get_IDs("LINK", lk);

 int i = 0;

 double TrueTT = 0.0;

 MatTTime = new double[8];
 MatRho = new double[8];
 MatU = new double[16];
 MatZ = new double[8];

 for (int l = 8; l < 16; l = l + 2)
 MatU[l + 1] = 2; // Number of lanes

 foreach (int lk in LinkIDs)
 {
 // to obtain true travel time
 VehIDs = vissim.Net.Vehicles.get_IDs("LINk", lk);

 MatU[i] = Convert.ToDouble(((object[])(VehIDs)).Length);

 for (int idx = 0; idx < MatU[i]; idx++)
 {
 vid = Convert.ToUInt16(((object[])(VehIDs))[idx]);
 MatTTime[i] +=
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("ELAPSEDTIME")) / 3.6; ;

 }

 // to obtain equipped cars' travel time

 VehIDs = vissim.Net.Links.GetLinkByNumber(lk).GetVehicles().get_IDs("TYPE",
1001);
 n = Convert.ToDouble(((object[])(VehIDs)).Length);

 if (MatU[i] > 0)
 MatRho[i] = n / MatU[i];
 else
 MatRho[i] = 0.0;

 for (j = 0; j < Convert.ToInt16(((object[])(VehIDs)).Length); j++)
 {
 vid = Convert.ToUInt16(((object[])(VehIDs))[j]);

 vtime =
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("ELAPSEDTIME")) /
3.6;//mps
 //vmile =
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("TOTALDISTANCE")) /
3.6;//mps
 MatZ[i] += vtime;

 }

35

 i++;
 }

 if (rCounter > Mn)
 {

 ListR = new List<double>();
 Listdx_k = new List<double>();

 foreach (int idx in MatR.Keys.Reverse<int>())
 {
 for (int idz = 0; idz < 8; idz++)
 {
 ListR.Add(MatR[idx][idz]);

 }
 }

 foreach (int idx in Matdk.Keys.Reverse<int>())
 {
 for (int idz = 0; idz < 8; idz++)
 {
 Listdx_k.Add(Matdk[idx][idz]);

 }
 }

 double[] ArrayR;
 double[] Arraydx_k;
 double[] ArraydiagQ = new double[8];

 //swlog.Write("qx=[");
 //for (int g = 0; g < 8; g++)
 //{
 // ArraydiagQ[g] = _diagQ_[g, 0];
 // swlog.Write(" "+Math.Round(ArraydiagQ[g],1));
 //}
 //swlog.WriteLine("];");

 if (rCounter > Mn)
 {
 ArrayR = new double[Mn * 8];
 Arraydx_k = new double[Mn * 8];
 for (int c = 0; c < Mn * 8; c++)
 {
 ArrayR[c] = ListR[c];
 Arraydx_k[c] = Listdx_k[c];
 }

 }
 else
 {
 ArrayR = new double[rCounter * 8];
 Arraydx_k = new double[rCounter * 8];
 for (int c = 0; c < rCounter * 8; c++)
 {

36

 ArrayR[c] = ListR[c];
 Arraydx_k[c] = Listdx_k[c];
 }
 }

 OptOut = OutEstimated.RunAdaptiveKalman3(4, al1, al2, at1, bl1, bt1, nl, H,
(MWNumericArray)ArraydiagQ,
 (MWNumericArray)Arraydx_k, Mn,
(MWNumericArray)ArrayR, R, (MWNumericArray)MatRho, (MWNumericArray)MatP_k_1,
(MWNumericArray)x_hat_pos_k_1,
 (MWNumericArray)MatU, (MWNumericArray)MatZ);
 }
 else
 OptOut = OutEstimated.RunKalmanNOGR(4, al1, al2, at1, bl1, bt1, nl, H, Ql,
Q, R,
 (MWNumericArray)MatRho, (MWNumericArray)MatP_k_1,
 (MWNumericArray)x_hat_pos_k_1, (MWNumericArray)MatU,
(MWNumericArray)MatZ);

 x_hat_k = (MWNumericArray)OptOut[0];
 P_k = (MWNumericArray)OptOut[1];
 dx_k = (MWNumericArray)OptOut[2];
 diagQ = (MWNumericArray)OptOut[3];

 double[,] _x_hat_k_ = new double[1, 8];
 double[,] _MatP_k_ = new double[8, 8];
 double[,] _dx_k_ = new double[1, 8];

 _x_hat_k_ = (double[,])x_hat_k.ToArray(MWArrayComponent.Real);
 _MatP_k_ = (double[,])P_k.ToArray(MWArrayComponent.Real);
 _dx_k_ = (double[,])dx_k.ToArray(MWArrayComponent.Real);
 diagQ = (double[,])diagQ.ToArray(MWArrayComponent.Real);

 MatR.Add(rCounter, new List<double>());
 Matdk.Add(rCounter, new List<double>());

 for (int o = 0; o < 8; o++)
 {
 MatR[rCounter].Add(MatZ[o] - H * MatRho[o] * x_hat_pos_k_1[o]);
 Matdk[rCounter].Add(_dx_k_[o, 0]);
 }

 rCounter++;

 for (int iter = 0; iter < 8; iter++)
 {
 sw.Write(MatTTime[iter] + "," + _x_hat_k_[iter, 0] + "," + MatZ[iter] + ","
+ MatRho[iter] + ",");

 if (_x_hat_k_[iter, 0] >= 0.0)
 x_hat_pos_k_1[iter] = _x_hat_k_[iter, 0];
 else
 x_hat_pos_k_1[iter] = 0.0;

37

 for (int g = 0; g < 8; g++)
 MatP_k_1[iter, g] = _MatP_k_[iter, g];
 }

 sw.WriteLine(vissim.Simulation.get_AttValue("ELAPSEDTIME"));
 sw.Flush();
 }

 private static void KF_EstimateTotalTravelTime_Matrix_woGreen()
 {
 // Matrix Setting
 // --------- Covariances
 double Q = 2660.0;
 double Ql = 376.9;
 double R = 207.96;

 // -------- H matrix
 double H = 0.999;

 // -------- A matrix
 double al1 = 0.982;
 double al2 = -0.00457;
 double at1 = 0.916;

 // --------- B matrix
 double bl1 = 1.96; // for LT volumes
 double bt1 = 1.85; // for TH volume
 double nl = -6.44; // for TH Num Lanes (all 2)

 object VehIDs;
 int j;
 double vtime = 0.0;
 double ttime = 0.0;
 int vid;
 double N = 0.0;
 double n = 0.0;
 double rho = 0.0;

 MWArray[] OptOut = null;
 MWNumericArray x_hat_k = new MWNumericArray();
 MWNumericArray P_k = new MWNumericArray();

 // VehIDs = vissim.Net.Vehicles.get_IDs("LINK", lk);

 int i = 0;

 double TrueTT = 0.0;

 MatTTime = new double[8];
 MatRho = new double[8];
 MatU = new double[16];
 MatZ = new double[8];

 for (int l = 8; l < 16; l = l + 2)
 MatU[l + 1] = 2; // Number of lanes

38

 foreach (int lk in LinkIDs)
 {
 // to obtain true travel time
 VehIDs = vissim.Net.Vehicles.get_IDs("LINk", lk);

 MatU[i] = Convert.ToDouble(((object[])(VehIDs)).Length);

 for (int idx = 0; idx < MatU[i]; idx++)
 {
 vid = Convert.ToUInt16(((object[])(VehIDs))[idx]);
 MatTTime[i] +=
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("ELAPSEDTIME")) / 3.6; ;

 }

 // to obtain equipped cars' travel time

 VehIDs = vissim.Net.Links.GetLinkByNumber(lk).GetVehicles().get_IDs("TYPE",
1001);
 n = Convert.ToDouble(((object[])(VehIDs)).Length);

 if (MatU[i] > 0)
 MatRho[i] = n / MatU[i];
 else
 MatRho[i] = 0.0;

 for (j = 0; j < Convert.ToInt16(((object[])(VehIDs)).Length); j++)
 {
 vid = Convert.ToUInt16(((object[])(VehIDs))[j]);

 vtime =
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("ELAPSEDTIME")) /
3.6;//mps
 //vmile =
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("TOTALDISTANCE")) /
3.6;//mps
 MatZ[i] += vtime;

 }

 i++;
 }

 OptOut = OutEstimated.RunKalmanNOGR(2, al1, al2, at1, bl1, bt1, nl, H, Ql, Q,
R,
 (MWNumericArray)MatRho,
(MWNumericArray)MatP_k_1,
 (MWNumericArray)x_hat_pos_k_1,
(MWNumericArray)MatU, (MWNumericArray)MatZ);

 x_hat_k = (MWNumericArray)OptOut[0];
 P_k = (MWNumericArray)OptOut[1];

 double[,] _x_hat_k_ = new double[1, 8];
 double[,] _MatP_k_ = new double[8, 8];

 _x_hat_k_ = (double[,])x_hat_k.ToArray(MWArrayComponent.Real);

39

 _MatP_k_ = (double[,])P_k.ToArray(MWArrayComponent.Real);

 for (int iter = 0; iter < 8; iter++)
 {
 //sw.Write(MatTTime[iter] + "," + _x_hat_k_[iter, 0] + "," + MatZ[iter] +
"," + MatRho[iter] + ",");
 x_hat_pos_k_1[iter] = _x_hat_k_[iter, 0];
 for (int g = 0; g < 8; g++)
 MatP_k_1[iter, g] = _MatP_k_[iter, g];
 }

 sw.WriteLine(K);
 sw.Flush();

 }
 private static void InitDictionaries()
 {
 for (int i = 0; i < 8; i++)
 {
 Z.Add(i, 0);
 u.Add(i, 0);
 }
 q.Add(0, new List<double>());
 r.Add(0, new List<double>());
 }

 private static bool SetSignalTime(int cl)
 {
 int nsg;
 int ns = 1;
 int i, j, k, l;
 int[] OldState;
 int[] NewState;
 int indicator1 = 0;
 int indicator2 = 0;

 int[,] P = { { 1, 5 }, { 1, 6 }, { 2, 5 }, { 2, 6 }, { 3, 7 }, { 3, 8 }, { 4, 7
}, { 4, 8 } };
 double[,] T;
 int a, b;

 double max = 0.0;

 GreenPhase = new int[8];

 nsg = Z.Count;

 OldState = new int[nsg];
 NewState = new int[nsg];
 T = new double[nsg, 3];

 for (i = 1; i <= nsg; i++)
 {
 if (GetSignalState(vissim, 1, i) == "Green")
 OldState[i - 1] = 2;
 else
 OldState[i - 1] = 3;
 }

40

 double a_ = 0.0;
 double b_ = 0.0;

 for (i = 0; i < nsg; i++)
 {
 a = P[i, 0] - 1;
 b = P[i, 1] - 1;

 if (x_hat_pos_k_1[a] >= 0.0)
 a_ = x_hat_pos_k_1[a];
 else
 a_ = 0.0;

 if (x_hat_pos_k_1[b] >= 0.0)
 b_ = x_hat_pos_k_1[b];
 else
 b_ = 0.0;

 T[i, 0] = a_ + b_;
 T[i, 1] = a;
 T[i, 2] = b;

 }

 for (j = 0; j < nsg; j++)
 {
 if (T[j, 0] > max)
 {
 max = T[j, 0];
 indicator1 = Convert.ToInt16(T[j, 1]); // indicate a phase to be GREEN
 indicator2 = Convert.ToInt16(T[j, 2]); // indicate a phase to be GREEN
 }
 }

 GreenPhase[indicator1] = 1;
 GreenPhase[indicator2] = 1;

 if (!((indicator1 + 1) == 2 && (indicator2 + 1) == 6 || (indicator1 + 1) == 4
&& (indicator2 + 1) == 8))
 {
 cl = GetOptimalCl(indicator1 + 1, indicator2 + 1, vissim, cl, LinkIDs);
 }

 for (k = 0; k < nsg; k++)
 {
 if (indicator1 == k || indicator2 == k)
 NewState[k] = 2;
 else
 NewState[k] = 3;
 }

 indicator1 = 0;

 for (l = 0; l < nsg; l++)
 {
 if (OldState[l] != NewState[l])
 indicator1 = l;

41

 }

 if (indicator1 > 0)
 {

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).set_AttValue("CYCLETIME", 0);

 for (k = 0; k < nsg; k++)
 {
 if (OldState[k] == 2 && NewState[k] == 3) // green -> red : set yellow
 {

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).SignalGroups.GetSignalGroupByNu
mber(k + 1).set_AttValue("TYPE", 1);

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).SignalGroups.GetSignalGroupByNu
mber(k + 1).set_AttValue("AMBER", 3);
 }
 else
 {

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).SignalGroups.GetSignalGroupByNu
mber(k + 1).set_AttValue("TYPE", OldState[k]);
 }
 }

 for (j = 1; j <= 3; j++)
 {
 if (Convert.ToDouble(vissim.Simulation.get_AttValue("ELAPSEDTIME")) >=
m) return false;
 vissim.Simulation.RunSingleStep();

 }

 for (k = 1; k <= nsg; k++)
 {

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).SignalGroups.GetSignalGroupByNu
mber(k).set_AttValue("TYPE", NewState[k - 1]);

 }

 for (j = 1; j <= (cl - 3); j++)
 {
 if (Convert.ToDouble(vissim.Simulation.get_AttValue("ELAPSEDTIME")) >=
m) return false;
 vissim.Simulation.RunSingleStep();

 }

 }
 else
 {
 for (k = 1; k <= nsg; k++)
 {

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).SignalGroups.GetSignalGroupByNu
mber(k).set_AttValue("TYPE", NewState[k - 1]);

 }

42

 for (j = 1; j <= cl; j++)
 {
 if (Convert.ToDouble(vissim.Simulation.get_AttValue("ELAPSEDTIME")) >=
m) return false;
 vissim.Simulation.RunSingleStep();

 }

 }

 return true;

 }

 private static int GetOptimalCl(int indicator1, int indicator2, Vissim vissim, int
ocl, int[] LinkIDs)
 {
 object VehIDs;

 int cnt1, cnt2, cnt;
 int cl;
 int link1, link2;

 link1 = LinkIDs[indicator1 - 1];
 link2 = LinkIDs[indicator2 - 1];

 cnt1 = 0;
 cnt2 = 0;
 cnt = 0;

 if (indicator1 != 2 && indicator1 != 6 && indicator1 != 4 && indicator1 != 8)
 {
 VehIDs = vissim.Net.Vehicles.get_IDs("LINK", link1);
 cnt1 = Convert.ToInt16(((object[])(VehIDs)).Length);
 }

 if (indicator2 != 2 && indicator2 != 6 && indicator2 != 4 && indicator2 != 8)
 {
 VehIDs = vissim.Net.Vehicles.get_IDs("LINK", link2);
 cnt2 = Convert.ToInt16(((object[])(VehIDs)).Length);
 }

 if (cnt1 >= cnt2)
 cnt = cnt1;
 else
 cnt = cnt2;

 if (cnt < 3)
 cl = ocl;
 else
 cl = ocl + Convert.ToInt16(Convert.ToDouble(cnt) * 1.2);

 return Convert.ToInt16(cl);
 }

 private static double CalcTotalTravelTimeV2(Vissim vissim, int lk)
 {
 object VehIDs;
 int j;

43

 double vtime = 0.0;
 double ttime = 0.0;
 int vid;
 double llength;
 double vloc;

 VehIDs = vissim.Net.Vehicles.get_IDs("LINK", lk);

 llength = 3.28084 *
Convert.ToDouble(vissim.Net.Links.GetLinkByNumber(lk).get_AttValue("LENGTH"));

 for (j = 0; j < Convert.ToInt16(((object[])(VehIDs)).Length); j++)
 {
 vid = Convert.ToUInt16(((object[])(VehIDs))[j]);
 vloc = llength -
Convert.ToDouble(vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("LINKCOORD"));

 if (vloc < 200)
 {
 vtime =
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("ELAPSEDTIME")) /
3.6;//mps
 //vmile =
((double)vissim.Net.Vehicles.GetVehicleByNumber(vid).get_AttValue("TOTALDISTANCE")) /
3.6;//mps

 ttime = ttime + vtime;
 }
 //tmile = tmile + vmile;

 }

 //ttime = ttime/Convert.ToInt16(((object[])(VehIDs)).Length);
 //avgspd = tmile / ttime;

 return ttime;

 }

 private static double[,] LoadVolScen(string fn_volsce, double[,] A)
 {
 StreamReader sr = new StreamReader(fn_volsce);

 int i, j;
 string tmp = null;
 string[] line;

 for (i = 0; i < 51; i++)
 {
 tmp = sr.ReadLine();
 line = tmp.Split(",".ToCharArray());

 for (j = 0; j < 16; j++)
 {
 A[i, j] = Convert.ToDouble(line[j]);
 }

 }

 sr.Close();

44

 return A;

 }

 private static void KillVissim(Vissim vissim)
 {
 vissim.Simulation.Stop();
 vissim.Exit();
 }

 private static string GetSignalState(Vissim vissim, int c, int g)
 {
 string s;
 s =
Convert.ToString(vissim.Net.SignalControllers.GetSignalControllerByNumber(c).SignalGroups.G
etSignalGroupByNumber(g).State);

 return s;

 }

 private static void InitVissim(int seed, bool visual, string fn, string fn_ini,
double[,] VolSce, int sce, double q_)
 {
 int i, j, k;
 int stype;

 vissim.LoadNet(fn, 0);
 vissim.LoadLayout(fn_ini);
 vissim.Simulation.Resolution = 1;
 vissim.Simulation.Period = 9999;
 //vissim.Simulation.BreakAt = 300;

 vissim.Evaluation.set_AttValue("NETPERFORMANCE", true);
 vissim.Evaluation.set_AttValue("DATACOLLECTION", false);
 //vissim.Evaluation.set_AttValue("LINK", true);
 //vissim.Evaluation.set_AttValue("DELAY", true);
 //vissim.Evaluation.set_AttValue("QUEUECOUNTER", true);

 vissim.Simulation.RandomSeed = seed;

 vissim.Graphics.set_AttValue("VISUALIZATION", visual);

 j = 0;

 for (i = 2; i <= 8; i = i + 2)
 {
 int l = 3;
 int vol;
 int tvol = 0;

 for (k = j; k < j + 3; k++)
 {
 vol = Convert.ToInt16(VolSce[sce, k]);

45

vissim.Net.RoutingDecisions.GetRoutingDecisionByNumber(i).Routes.GetRouteByNumber(l).set_At
tValue1("RELATIVEFLOW", 1, vol);
 tvol = tvol + vol;
 l--;
 }
 vissim.Net.VehicleInputs.GetVehicleInputByNumber(i /
2).set_AttValue("VOLUME", tvol);

vissim.Net.TrafficCompositions.GetTrafficCompositionByNumber(i).set_AttValue1("RELATIVEFLOW
", 1001, q_); // % of equipped Car

vissim.Net.TrafficCompositions.GetTrafficCompositionByNumber(i).set_AttValue1("RELATIVEFLOW
", 1002, 1 - q_); // % of dumb car

 j = j + 4;
 }

//vissim.Net.SignalControllers.GetSignalControllerByNumber(1).set_AttValue("CYCLETIME",
cl);

 int cnt = r.Count;

 MatR.Add(0, new List<double>());
 Matdk.Add(0, new List<double>());
 rCounter++;

 vissim.Simulation.RunSingleStep(); // Added by JL on Apr 6 2015. To consider
VISSIM 5.4 or later. The simulation must be started to access the controller data.
 for (i = 1; i <= 8; i++)
 {
 if (i == 2 || i == 6)
 {

 stype = 2;
 }
 else
 {
 stype = 3;
 }

vissim.Net.SignalControllers.GetSignalControllerByNumber(1).SignalGroups.GetSignalGroupByNu
mber(i).set_AttValue("TYPE", stype);

 //Z[i - 1] = 0;
 //u[i - 1] = 0;
 x_hat_pos_k_1[i - 1] = 1.0;
 P_k_1[i - 1] = 1.0;

 for (int kk = 0; kk < 8; kk++)
 MatP_k_1[i - 1, kk] = 1.0;

 x_hat_pri_k[i - 1] = 0.0;
 P_K[i - 1] = 0.0;
 K_k[i - 1] = 0.0;

46

 //r[cnt].Add(0.0);
 //q[cnt].Add(0.0);

 MatR[0].Add(0);
 Matdk[0].Add(0);
 }

 // -------- sort of warming up!
 for (i = 1; i < 20; i++)
 {
 vissim.Simulation.RunSingleStep();
 }

 GreenPhase[1] = 1;
 GreenPhase[5] = 1;

 }

 }
}

Collecting Vehicles’ MAC Addresses

C# Code: BTcollect

 using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO.Ports;
using System.IO;
using System.Net;
using System.Management;
using System.Data.OleDb;
using System.Data;

namespace _300ftbt
{
 class Program
 {
 public static Dictionary<int, string> MonthName = new Dictionary<int,
string>();
 static void Main(string[] args)
 {
 OleDbConnection connection = new OleDbConnection(); ;
 OleDbCommand command = new OleDbCommand();
 DataSet dataset = new DataSet();
 DateTime TimeNow = new DateTime();

 SerialPort XBeeConnection = new SerialPort();
 XBeeConnection.BaudRate = 9600;

47

 XBeeConnection.PortName = "COM17";
 XBeeConnection.Open();

 string[] token = null;
 string tstmp = null;
 string sender = null;
 string macad = null;

 connection.ConnectionString = @"Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:/Projects/BTDataManager/DB/BTDB1.accdb;";
 connection.Open();

 SetMnth();
 string line = null;
 if (XBeeConnection.IsOpen)
 {
 while (true)
 {
 line = XBeeConnection.ReadLine();

 token = line.Split("|".ToCharArray());

 if (token.Length > 2)
 {
 sender = token[0];
 tstmp = token[1];

 if (tstmp.Length != 24)
 continue;
 TimeNow = ConvertTime(tstmp);

 try
 {
 for (int i = 2; i<token.Length - 1; i++)
 {
 string str = "INSERT INTO BTMacs(MAC,Sender,TStamp)"
+
 "VALUES(('" + token[i] + "'),('" + sender +
"'),('" + TimeNow + "'))";
 OleDbCommand insertCmd = new OleDbCommand(str,
connection);
 insertCmd.ExecuteNonQuery();

 Console.WriteLine(tstmp + "," + sender + "," +
token[i]);
 }
 }
 catch (OleDbException)
 {
 Console.WriteLine("Error while uploading the data");
 }
 }

 }

48

 }

 connection.Close();

 }

 private static DateTime ConvertTime(string date_)
 {
 DateTime TimeNow = new DateTime();

 if (date_.Contains(" "))
 date_ = date_.Replace(" ", " ");

 int yy_;
 int mn_;
 int dd_;
 int hh_;
 int mm_;
 int ss_;
 string[] tstamp = null;

 mn_ = GetMnth(date_.Split(" ".ToCharArray())[1]);
 //if (mn_ == 0)
 // return null;
 dd_ = int.Parse(date_.Split(" ".ToCharArray())[2]);

 tstamp = date_.Split(" ".ToCharArray())[3].Split(":".ToArray());

 hh_ = int.Parse(tstamp[0]);
 mm_ = int.Parse(tstamp[1]);
 ss_ = int.Parse(tstamp[2]);

 yy_ = int.Parse(date_.Split(" ".ToCharArray())[4]);

 TimeNow = new DateTime(yy_, mn_, dd_, hh_, mm_, ss_);

 return TimeNow;

 }

 public static void SetMnth()
 {
 MonthName.Add(1, "Jan");
 MonthName.Add(2, "Feb");
 MonthName.Add(3, "Mar");
 MonthName.Add(4, "Apr");
 MonthName.Add(5, "May");
 MonthName.Add(6, "Jun");
 MonthName.Add(7, "Jul");
 MonthName.Add(8, "Aug");
 MonthName.Add(9, "Sep");
 MonthName.Add(10, "Oct");

49

 MonthName.Add(11, "Nov");
 MonthName.Add(12, "Dec");
 }

 public static int GetMnth(string p)
 {
 int rt = 0;

 foreach (int i in MonthName.Keys)
 {
 if (MonthName[i] == p)
 rt = i;

 }

 return rt;

 }

 }
}

C# Code: BTcollect

 using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO.Ports;
using System.IO;
using System.Net;
using System.Management;
using System.Data.OleDb;
using System.Data;

namespace _300ftbt
{
 class Program
 {
 public static Dictionary<int, string> MonthName = new Dictionary<int,
string>();
 static void Main(string[] args)
 {
 OleDbConnection connection = new OleDbConnection(); ;
 OleDbCommand command = new OleDbCommand();
 DataSet dataset = new DataSet();
 DateTime TimeNow = new DateTime();

 SerialPort XBeeConnection = new SerialPort();
 XBeeConnection.BaudRate = 9600;

50

 XBeeConnection.PortName = "COM17";
 XBeeConnection.Open();

 string[] token = null;
 string tstmp = null;
 string sender = null;
 string macad = null;

 connection.ConnectionString = @"Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:/Projects/BTDataManager/DB/BTDB1.accdb;";
 connection.Open();

 SetMnth();
 string line = null;
 if (XBeeConnection.IsOpen)
 {
 while (true)
 {
 line = XBeeConnection.ReadLine();

 token = line.Split("|".ToCharArray());

 if (token.Length > 2)
 {
 sender = token[0];
 tstmp = token[1];

 if (tstmp.Length != 24)
 continue;
 TimeNow = ConvertTime(tstmp);

 try
 {
 for (int i = 2; i<token.Length - 1; i++)
 {
 string str = "INSERT INTO BTMacs(MAC,Sender,TStamp)"
+
 "VALUES(('" + token[i] + "'),('" + sender +
"'),('" + TimeNow + "'))";
 OleDbCommand insertCmd = new OleDbCommand(str,
connection);
 insertCmd.ExecuteNonQuery();

 Console.WriteLine(tstmp + "," + sender + "," +
token[i]);
 }
 }
 catch (OleDbException)
 {
 Console.WriteLine("Error while uploading the data");
 }
 }

 }

51

 }

 connection.Close();

 }

 private static DateTime ConvertTime(string date_)
 {
 DateTime TimeNow = new DateTime();

 if (date_.Contains(" "))
 date_ = date_.Replace(" ", " ");

 int yy_;
 int mn_;
 int dd_;
 int hh_;
 int mm_;
 int ss_;
 string[] tstamp = null;

 mn_ = GetMnth(date_.Split(" ".ToCharArray())[1]);
 //if (mn_ == 0)
 // return null;
 dd_ = int.Parse(date_.Split(" ".ToCharArray())[2]);

 tstamp = date_.Split(" ".ToCharArray())[3].Split(":".ToArray());

 hh_ = int.Parse(tstamp[0]);
 mm_ = int.Parse(tstamp[1]);
 ss_ = int.Parse(tstamp[2]);

 yy_ = int.Parse(date_.Split(" ".ToCharArray())[4]);

 TimeNow = new DateTime(yy_, mn_, dd_, hh_, mm_, ss_);

 return TimeNow;

 }

 public static void SetMnth()
 {
 MonthName.Add(1, "Jan");
 MonthName.Add(2, "Feb");
 MonthName.Add(3, "Mar");
 MonthName.Add(4, "Apr");
 MonthName.Add(5, "May");
 MonthName.Add(6, "Jun");
 MonthName.Add(7, "Jul");
 MonthName.Add(8, "Aug");
 MonthName.Add(9, "Sep");
 MonthName.Add(10, "Oct");

52

 MonthName.Add(11, "Nov");
 MonthName.Add(12, "Dec");
 }

 public static int GetMnth(string p)
 {
 int rt = 0;

 foreach (int i in MonthName.Keys)
 {
 if (MonthName[i] == p)
 rt = i;

 }

 return rt;

 }

 }
}

Calculating Travel Time

C# Code: TTCalc

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.OleDb;
using System.Data;
using System.IO;

namespace TTCalc
{
 class Program
 {
 static void Main(string[] args)
 {
 OleDbConnection connection = new OleDbConnection(); ;
 OleDbCommand command = new OleDbCommand();
 OleDbDataAdapter adapter;
 DataSet dataset = new DataSet();

 DateTime TimeNow;

 Dictionary<string, Dictionary<string,string>> BTData = new
Dictionary<string, Dictionary<string, string>>(); // Dev,Mac,Timestamp

 string mnth = null;
 string date_ = null;
 string year = null;
 string hour_ = null;

53

 string mn_ = null;
 string ampm= null;

 string[] token = null;
 string tstmp = null;
 string up = @"""192.168.137.51""";
 string down = @"""192.168.137.52""";
 string macad = null;
 string str = null;
 string st = null;
 string ed = null;

 int upts = 0;
 int dnts = 0;
 int N = 1; // update interval in minute

 StreamWriter sw = new
StreamWriter(@"C:\Projects\BTDataManager\DB\out.csv");

 while (true)
 {
 connection.ConnectionString =
@"Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:/Projects/BTDataManager/DB/BTDB1.accdb;";

 connection.Open();

 BTData = new Dictionary<string, Dictionary<string, string>>(); //
Dev,Mac,Timestamp

 BTData.Add(up, new Dictionary<string, string>());
 BTData.Add(down, new Dictionary<string, string>());

 Console.WriteLine("Downloading Data...");

 try
 {
 //TimeNow = DateTime.Now.ToUniversalTime();
 TimeNow = DateTime.Now;
 mnth = TimeNow.Month.ToString();
 date_ = TimeNow.Day.ToString();
 year = TimeNow.Year.ToString();
 hour_ = TimeNow.ToString("hh:mm:ss
tt").Split(":".ToCharArray())[0];
 mn_ = TimeNow.ToString("hh:mm:ss
tt").Split(":".ToCharArray())[1];
 ampm = TimeNow.ToString("hh:mm:ss tt").Split("
".ToCharArray())[1];
 ed = "#" + mnth + "/" + date_ + "/" + year + " " + hour_ + ":"
+ mn_ + ":00 " + ampm + "#";

 //TimeNow = DateTime.Now.AddMinutes(-
1*N*60).ToUniversalTime();
 TimeNow = DateTime.Now.AddMinutes(-1 * N * 60);
 mnth = TimeNow.Month.ToString();

54

 date_ = TimeNow.Day.ToString();
 year = TimeNow.Year.ToString();
 hour_ = TimeNow.ToString("hh:mm:ss
tt").Split(":".ToCharArray())[0];
 mn_ = TimeNow.ToString("hh:mm:ss
tt").Split(":".ToCharArray())[1];
 ampm = TimeNow.ToString("hh:mm:ss tt").Split("
".ToCharArray())[1];
 st = "#" + mnth + "/" + date_ + "/" + year + " " + hour_ + ":"
+ mn_ + ":00 " + ampm + "#";

 str = "SELECT BTMacs.Sender, BTMacs.MAC, BTMacs.TSTamp FROM
BTMacs " +
 "WHERE (((BTMacs.Sender)=" + up + ")" +
 " AND (([BTMacs]![TSTamp]) Between " + st + " And " + ed +
"));";
 OleDbCommand Cmd = new OleDbCommand(str, connection);

 using (OleDbDataReader reader = Cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 string mcad =
reader["MAC"].ToString().Split(",".ToCharArray())[0];
 string tsp = reader["TSTamp"].ToString();
 if (BTData[up].ContainsKey(mcad))
 {
 BTData[up].Remove(mcad);
 BTData[up].Add(mcad, tsp);
 }
 else
 BTData[up].Add(mcad, tsp);
 }
 }

 str = "SELECT BTMacs.Sender, BTMacs.MAC, BTMacs.TSTamp FROM
BTMacs " +
 "WHERE (((BTMacs.Sender)=" + down + ")" +
 " AND (([BTMacs]![TSTamp]) Between " + st + " And " + ed
+ "));";
 Cmd = new OleDbCommand(str, connection);

 using (OleDbDataReader reader = Cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 string mcad =
reader["MAC"].ToString().Split(",".ToCharArray())[0];
 string tsp = reader["TSTamp"].ToString();
 if (BTData[down].ContainsKey(mcad))
 {
 BTData[down].Remove(mcad);
 BTData[down].Add(mcad, tsp);
 }
 else

55

 BTData[down].Add(mcad, tsp);
 }
 }

 }
 catch (OleDbException)
 {
 Console.WriteLine("Error while uploading the data");
 }

 connection.Close();

 Console.WriteLine("Estiamting ravel Time...");
 sw.Write(DateTime.Now);

 if (BTData[up].Count > 0 && BTData[down].Count > 0)
 {
 foreach (string macadd in BTData[down].Keys)
 {
 if (BTData[up].ContainsKey(macadd))
 {
 upts = ConvertTime(BTData[up][macadd]);
 dnts = ConvertTime(BTData[down][macadd]);

 sw.Write("," + (dnts - upts).ToString());
 }

 }
 sw.WriteLine();
 }
 else
 sw.WriteLine("No Data Collected");

 sw.Flush();

 System.Threading.Thread.Sleep(N*60*1000); // update interval of N
minutes
 }
 }

 private static int ConvertTime(string date_)
 {
 int timeinsecond = 0;
 int yy_;
 int mn_;
 int dd_;
 int hh_;
 int mm_;
 int ss_;
 string tt;

 string[] tstamp = null;

 mn_ = int.Parse(date_.Split("/".ToCharArray())[0]);
 dd_ = int.Parse(date_.Split("/".ToCharArray())[1]);

56

 //yy_ = int.Parse(date_.Split("/".ToCharArray())[2]);

 tstamp = date_.Split(" ".ToCharArray())[1].Split(":".ToArray());

 hh_ = int.Parse(tstamp[0]);
 mm_ = int.Parse(tstamp[1]);
 ss_ = int.Parse(tstamp[2]);

 tt = date_.Split(" ".ToCharArray())[2];

 if (tt == "PM")
 hh_ = hh_ + 12;

 timeinsecond = ss_ + 60 * mm_ + 3600 * hh_ + 3600 * 24 * dd_;

 return timeinsecond;
 }
 }
}

